More info
  • AcceptedSep 2, 2011
  • PublishedJan 12, 2012



[1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci, 2000, 28:211-280. CrossRef Google Scholar

[2] Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asian collision, south central Tibet. Tectonics,2005, 24,. CrossRef Google Scholar

[3] Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites. Tectonophysics, 1987, 134:39-57. CrossRef Google Scholar

[4] Harris N, Inger S. Trace element modeling of pelite-derived granites. Contrib Mineral Petrol, 1992, 110:46-56. CrossRef Google Scholar

[5] Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34:345-368. Google Scholar

[6] Guillot S, Le Fort P. Geochemical constraint on the bimodal origin of High Himalayan leucogranite. Lithos, 1995, 35:221-234. CrossRef Google Scholar

[7] Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, South Tibetan Himalaya:Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105:295-317. CrossRef Google Scholar

[8] 张宏飞, Harris N, Parrish R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb 年龄及其地质意义. 科学通报, 2004, 49:2090-2094. Google Scholar

[9] 张宏飞, Harris N, Parrish R, 等. 北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义. 地球科学, 2005, 30:275-288. Google Scholar

[10] Zhang H, Harris N, Parrish R R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228:195-212. CrossRef Google Scholar

[11] Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages. Geology, 2007, 35:45-48. CrossRef Google Scholar

[12] Aikman A B, Harrison T M, Ding L. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274:14-23. CrossRef Google Scholar

[13] 戚学祥, 曾令森, 孟祥金, 等. 特提斯喜马拉雅奴拉花岗岩的锆石SHRIMP U-Pb 定年及其地质意义. 岩石学报, 2008, 24:1501-1508. Google Scholar

[14] 高利娥, 曾令森, 刘静, 等. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 2009, 25:2289-2302. Google Scholar

[15] 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 2009, 54:373-381. Google Scholar

[16] Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes:melting thickened lower continental crust. Earth Planet Sci Lett, 2011, 303:251-266. CrossRef Google Scholar

[17] Pinet C, Jaupart C. A thermal model for the distribution in space and time of the Himalayan granites. Earth Planet Sci Lett, 1987, 84:87-99. CrossRef Google Scholar

[18] Harrison T M, Lovera O M, Grove M. New insights into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25:899-902. CrossRef Google Scholar

[19] Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13:1537-1546. CrossRef Google Scholar

[20] Burchfiel B C, Molnar P, Zhao Z, et al. Geology of the Ulugh Muztagh area, Northern Tibet. Earth Planet Sci Lett, 1989, 94:57-70. CrossRef Google Scholar

[21] McKenna L W, Walker J D. Geochemistry of crustally-derived leucocratic igneous rocks from the Ulugh Muztagh area, Northern Tibet and their implications for the formation of the Tibetan Plateau. J Geophys Res, 1990, 95:21483-21502. CrossRef Google Scholar

[22] Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanic rocks in Tibet:Evidence for a transition from oceanic to continental subduction. J Petrol, 2003, 44:1833-1865. CrossRef Google Scholar

[23] Ding L, Kapp P, Yue Y, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet Sci Lett, 2007, 254:28-38. CrossRef Google Scholar

[24] Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sci Lett, 2008, 272:158-171. CrossRef Google Scholar

[25] 张以茀, 郑健康. 青海可可西里及邻区地质概论. 北京:地震出版社, 1994. Google Scholar

[26] 邓万明. 青藏高原新生代板内火山岩. 北京:地质出版社, 1998. Google Scholar

[27] 邓万明, 郑锡澜, 松本征夫. 青海可可西里地区新生代火山岩的岩石特征与时代. 岩石矿物学杂志, 1996, 15:289-298. Google Scholar

[28] 朱迎堂, 贾全香, 伊海生, 等. 青海可可西里湖地区新生代两期火山岩. 矿物岩石, 2005, 25:23-29. Google Scholar

[29] 江东辉, 刘嘉麒, 丁林. 青藏高原北部可可西里地区新生代钾质火山岩地球化学特征及成因. 岩石学报, 2008, 24:279-290. Google Scholar

[30] 郑祥身, 边千韬, 郑健康. 青海可可西里地区新生代火山岩研究. 岩石学报, 1996, 12:530-545. Google Scholar

[31] 杨经绥, 吴才来, 史仁灯, 等. 青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩. 岩石学报, 2002, 18:161-176. Google Scholar

[32] 魏启荣, 李德威, 王国灿, 等. 青藏高原北部查保马组火山岩的锆石SHRIMP U-Pb 定年和地球化学特点及其成因意义. 岩石学报,2007, 23:2727-2736. Google Scholar

[33] Arnaud N O, Vidal P, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications. Earth Planet Sci Lett, 1992, 111:351-367. CrossRef Google Scholar

[34] Turner S, Arnaud N, Liu L, et al. Post-collision shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37:45-71. CrossRef Google Scholar

[35] Cooper K M, Reid M R, Dunbar N W, et al. Origin of mafic magmas beneath northwestern Tibet:Constraints from 230Th-238U disequilibria. Geochem Geophys Geosys, 2002, 3,. CrossRef Google Scholar

[36] Wang Q, McDermott F, Xu J, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting. Geology, 2005, 33:465-468. CrossRef Google Scholar

[37] Guo Z, Wilson M, Liu J, et al. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan plateau:Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol, 2006, 47:1177-1220. CrossRef Google Scholar

[38] Yin A, Harrison T M, Ryerson F J. Transtension along the left-slip Altyn Tagh and Kunlun faults as a mechanism for the occurrence of Late Cenozoic volcanism in the northern Tibetan Plateau. Eos Trans AGU, 1995, 567. Google Scholar

[39] Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet:New constraints on the age of the Kunlun fault. Tectonics, 2003, 22:1052-1074. CrossRef Google Scholar

[40] Fu B, Awata Y. Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. J Asian Earth Sci, 2007, 29:253-265. CrossRef Google Scholar

[41] Black L P. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200:155-170. CrossRef Google Scholar

[42] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP 样品靶制作、年龄测定及有关现象讨论. 地质论评, 2002, 48(增刊):26-30. Google Scholar

[43] Composton W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J Geophys Res, 1984, 89:525-534. CrossRef Google Scholar

[44] Williams I S. U-Th-Pb geochronology by ion microprobe. In:Mchinbben M A, Ahanks W C, Ridey W I, eds. Application of Microanalytical Techniques to Understanding Mineralizaing Process. Rev Econ Geol, 1998, 7:1-35. Google Scholar

[45] 万渝生, 罗照华, 李莉. 3.8 Ma:青藏高原年轻碱性玄武岩锆石离子探针U-Pb 年龄测定. 地球化学, 2004, 33:442-446. Google Scholar

[46] Ludwig K R. SQUID ver.:1.02. A user’s Manual. Berkeley Geochronol Center Spec Publ, 2001, 2:1-19. Google Scholar

[47] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Newslett, 2004, 28:353-370. CrossRef Google Scholar

[48] Griffin W L, Powell W J, Pearson N J, et al. GLITTER:Data reduction software for laser ablation ICP-MS. In:Sylvester P, ed. Laser Ablation- ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues:Mineral Assoc Canada Short Course, 2008, 40:308-311. Google Scholar

[49] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192:59-79. CrossRef Google Scholar

[50] Ludwig K. Users Manual for Isoplot/Ex (rev. 2.49):A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Pub, 2001. Google Scholar

[51] Renne P R, Deino A L, Walter R C, et al. Intercalibration of astronomical and radio isotopic time. Geology, 1994, 22:783-786. CrossRef Google Scholar

[52] Steiger R H, Jäger E. Subcommission on geochronology:Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett, 1977, 36:359-362. CrossRef Google Scholar

[53] Dazé A, Lee K W J, Villeneuve M. An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff. Chem Geol, 2003, 199:111-127. CrossRef Google Scholar

[54] Li C F, Chen F K, Li X H. Precise isotopic measurements of sub-nanogram Nd of standard reference material by thermal ionization mass spectrometry using the NdO+ technique. Int J Mass Spectrom, 2007, 266:34-41. CrossRef Google Scholar

[55] Boynton W V. Cosmochemistry of the rare earth elements:Meteorite studies. In:Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam:Elsevier, 1984. 63-114. Google Scholar

[56] She Z B, Ma C Q, Mason R, et al. Provenance of the Triassic Songpan-Ganzi flysch, west China. Chem Geol, 2006, 231:159-175. CrossRef Google Scholar

[57] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题. 岩石学报, 2007, 23:1217-1238. Google Scholar

[58] Chappell B W, White A J R. I and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci, 1992, 83:1-26. CrossRef Google Scholar

[59] Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45:29-44. CrossRef Google Scholar

[60] Barker F. Trondhjemite:Definition, environment and hypotheses of origin. In:Barker F, ed. Trondhjemites, Dacites, and Related Rocks. Developments in Petrology. Amsterdam:Elsevier, 1979. 1-12. Google Scholar

[61] Patiňo Douce A E, Harris N. Experimental constraints on Himalayan anatexis. J Petrol, 1998, 39:689-710. CrossRef Google Scholar

[62] Le Breton N, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol, 1988, 99:226-237. CrossRef Google Scholar

[63] Vielzeuf D, Holloway J R. Experimental determination of the fluid-absent melting relations in the pelitic system:Consequence for crustal differentiation. Contrib Mineral Petrol, 1988, 98:257-276. CrossRef Google Scholar

[64] Hacker B R, Gnos E, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet. Science, 2000, 287:2463-2466. CrossRef Google Scholar

[65] Ayres M, Harris N. REE fractionation and Nd-isotope disequilibrium during crustal anatexis:Constraints from Himalayan leucogranites. Lithos, 1997, 139:249-269. Google Scholar

[66] Zeng L, Asimow P D, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematic of anatectic melts from a metasedimentary source. Geochim Cosmochim Acta, 2005, 69:3671-3682. CrossRef Google Scholar

[67] Brown M. The generation, segregation, ascent and emplacement of granite magma:The migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci Rev, 1994, 36:83-130. CrossRef Google Scholar

[68] Blisniuk M P, Hacker R B, Glodny J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 2001, 412:628-632. Google Scholar

[69] Williams H M, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29:339-342. CrossRef Google Scholar

[70] Coleman M, Hodges K. Evidence for Tibetan Plateau uplifted before 14 Myr ago from a new minimal age for east-west extension. Nature,1995, 374:49-52. CrossRef Google Scholar

[71] Amijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in south Tibet:Field observations and tectonic implications. J Geophys Res, 1986, 91:13803-13872. CrossRef Google Scholar

[72] England P C, Houseman G A. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J Geophys Res, 1986, 91:3664-3676. Google Scholar

[73] Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294:1671-1677. CrossRef Google Scholar

[74] Wang C, Liu Z, Yi H, et al. Tertiary crustal shortening and peneplenation in the Hoh Xil region:Implications for the tectonic history of the northern Tibetan Plateau. J Asian Earth Sci, 2002, 20:211-223. CrossRef Google Scholar

[75] Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau. Geophys J Int, 1998, 135:1-47. CrossRef Google Scholar

[76] Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China. Tectonics, 1998, 17:823-842. CrossRef Google Scholar

[77] Wang C S, Zhao X X, Lippert P C, et al. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105:4987-4992. CrossRef Google Scholar

[78] Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 1998, 394:769-773. CrossRef Google Scholar

[79] 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨. 中国科学D 辑:地球科学, 1996, 26:289-295. Google Scholar

[80] Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 Million years. Nature, 2003, 421:622-624. CrossRef Google Scholar

[81] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439:677-681. CrossRef Google Scholar


Contact and support