logo

More info
  • ReceivedNov 12, 2020
  • AcceptedFeb 3, 2021
  • PublishedApr 2, 2021

Abstract


Funded by

国家自然科学基金(31971921)

浙江省自然科学杰出青年基金(LR20C130001)

浙江省万人计划青年拔尖人才(ZJWR0108023)

国家科技重大专项(2016ZX08009003-003-008)

广西水稻遗传育种重点实验室开放基金(KYZ04Y21009)

中国水稻生物学国家重点实验室(20200102)


References

[1] Zhang X F, Wang D Y, Fang F P, et al. China’s food security and rice production (in Chinese). Res Agric Modern, 2005. 26: 85–88 [章秀福, 王丹英, 方福平, 等. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26: 85–88]. Google Scholar

[2] Deng N, Grassini P, Yang H, et al. Closing yield gaps for rice self-sufficiency in China. Nat Commun, 2019, 10: 1725 CrossRef PubMed ADS Google Scholar

[3] Li Z, Pinson S R M, Stansel J W, et al. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (shape Oryza sativa L.). Mol Breeding, 1998, 4: 419-426 CrossRef Google Scholar

[4] Zhang B. QTL analysis of morphological and yield-related characters of rice swordleaf under different conditions (in Chinese). Dissertation for Master’s Degree. Beijing: Chinese Academy of Agricultural Sciences, 2014 [张斌. 不同环境下水稻剑叶形态与产量相关性状的QTL分析. 硕士学位论文. 北京: 中国农业科学院, 2014]. Google Scholar

[5] Zou D T, Wang J, Wang J G, et al. Gene mapping analysis of leaf morphology and yield per plant in rice (in Chinese). J Northeast Agric Univ, 2014, 45: 23–28 [邹德堂, 王晋, 王敬国, 等. 水稻剑叶形态与单株产量的基因定位分析. 东北农业大学学报, 2014, 45: 23–28]. Google Scholar

[6] Zhang L, Li X N, Wang W, et al. QTL analysis of related traits of rice plant type (in Chinese). J Crop, 2014, 40: 2128–2135 [张玲, 李晓楠, 王伟, 等. 水稻株型相关性状的QTL分析. 作物学报, 2014, 40: 2128–2135]. Google Scholar

[7] Gao S J. Studies on upright panicle type rice (in Chinese). Dissertation for Doctoral Degree. Shenyang: Shenyang Agricultural University, 1999 [高士杰. 直立穗型水稻的研究. 博士学位论文. 沈阳: 沈阳农业大学, 1999]. Google Scholar

[8] Yan S, Yan C J, Gu M H. Molecular mechanism of leaf development. Hereditas (Beijing), 2008, 30: 1127-1135 CrossRef PubMed Google Scholar

[9] Xu J, Wang L, Qian Q, et al. Research progress on molecular regulation mechanism of morphological formation in rice leaves (in Chinese). J Crop, 2013, 39: 767–774 [徐静, 王莉, 钱前, 等. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013, 39: 767–774]. Google Scholar

[10] Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507 CrossRef PubMed Google Scholar

[11] Qi J, Qian Q, Bu Q, et al. Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947-1959 CrossRef PubMed Google Scholar

[12] Hu J, Zhu L, Zeng D, et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283-292 CrossRef PubMed Google Scholar

[13] Wang H, Deng X W. Development of the “Third-Generation” hybrid rice in China. Genomics Proteomics Bioinformatics, 2018, 16: 393-396 CrossRef PubMed Google Scholar

[14] Tagle A G, Fujita D, Ebron L A, et al. Characterization of QTL for unique agronomic traits of new-plant-type rice varieties using introgression lines of IR64. Crop J, 2016, 4: 12-20 CrossRef Google Scholar

[15] Wang P, Zhou G, Cui K, et al. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol Breeding, 2012, 29: 99-113 CrossRef Google Scholar

[16] Chen M, Luo J, Shao G, et al. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep, 2012, 31: 863-872 CrossRef PubMed Google Scholar

[17] Jiang S, Zhang X, Wang J, et al. Fine mapping of the quantitative trait locus qFLL9 controlling flag leaf length in rice. Euphytica, 2010, 176: 341-347 CrossRef Google Scholar

[18] Marathi B, Guleria S, Mohapatra T, et al. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 137 CrossRef PubMed Google Scholar

[19] Zhan X, Sun B, Lin Z, et al. Genetic mapping of a QTL controlling source-sink size and heading date in rice. Gene, 2015, 571: 263-270 CrossRef PubMed Google Scholar

[20] McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13. Google Scholar

[21] Wang L. Analysis and gene mapping of leaf shape characters in early senility and late growth stage of rice (in Chinese). Dissertation for Master’s Degree. Beijing: Chinese Academy of Agricultural Sciences, 2014 [王兰. 水稻叶片早衰及生育后期叶形性状分析与基因定位. 硕士学位论文. 北京: 中国农业科学院, 2014]. Google Scholar

[22] Bian J M, He H H, Shi H, et al. Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population. Plant Breeding, 2014, 133: 203–209. Google Scholar

[23] Wang D R. Construction of genetic map of wild rice and QTLs localization of main agronomic traits (in Chinese). Dissertation for Master’s Degree. Yangzhou: Yangzhou University, 2017 [王德荣. 长雄蕊野生稻遗传图谱的构建及主要农艺性状QTLs定位. 硕士学位论文. 扬州: 扬州大学, 2017]. Google Scholar

[24] Liu X, Wang J, Zeng W, et al. Preliminary localization analysis of QTLS for four agronomic traits in rice (in Chinese). Genomics Appl Biol, 2014, 33: 604–609 [刘欣, 王君, 曾伟, 等. 水稻4种农艺性状QTL的初步定位分析. 基因组学与应用生物学, 2014, 33: 604–609]. Google Scholar

[25] Deng S F. Construction of chromosome fragment substitution lines and QTL analysis of important agronomic traits inrice with the background of Hua Zhan (in Chinese). Dissertation for Master’s Degree. Yangzhou: Yangzhou University, 2017 [邓世峰. 以华占为背景的水稻染色体片段代换系的构建及重要农艺性状的QTL分析. 硕士学位论文. 扬州: 扬州大学, 2017]. Google Scholar

[26] Aya K, Hobo T, Sato-Izawa K, et al. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol, 2014, 55: 897-912 CrossRef PubMed Google Scholar

[27] Wang D, Qin B, Li X, et al. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genet, 2016, 12: e1005844 CrossRef PubMed Google Scholar

[28] Jiang D, Fang J, Lou L, et al. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS ONE, 2015, 10: e0118169 CrossRef PubMed ADS Google Scholar

[29] Morita Y, Kyozuka J. Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. Plant Cell Physiol, 2007, 48: 540-549 CrossRef PubMed Google Scholar

[30] Margis-Pinheiro M, Zhou X R, Zhu Q H, et al. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep, 2005, 23: 819-833 CrossRef PubMed Google Scholar

[31] Huang J, Tang D, Shen Y, et al. Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genets Genomics, 2010, 37: 23-36 CrossRef Google Scholar

[32] Xu Y X, Xiao M Z, Liu Y, et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Mol Biol, 2017, 94: 97-107 CrossRef PubMed Google Scholar

  • Figure 1

    QTL analysis technology roadmap

  • Figure 2

    Comparison of flag leaves at mature stage of rice. Scale bar=5 cm

  • Figure 3

    Distribution of morphological traits of the flag leaf in the recombination inbred line population in rice

  • Figure 4

    QTL mapping of morphological traits for flag leaf in rice. FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area

  • Figure 5

    Relevant gene expression. A: Expression of related genes at tillering stage in HZ and Nekken2; B: expression of related genes at mature period in HZ and Nekken2. * and ** indicate significant differences between HZ and Nekken2 at 0.05 and 0.01 level, respectively

  • Table 1   Primer sequences for qRT-PCR

    引物名称

    序列

    温度(℃)

    长度(bp)

    LOC_Os12g42020-F-qrt

    5′-GCCATCGAGTACCTCCACAT-3′

    59.96

    107

    LOC_Os12g42020-R-qrt

    3′-GAGAGGTCGAAGTCGGTGAG-5′

    59.99

    LOC_Os04g52230-F-qrt

    5′-TGCAGATGGACTACGACCTG-3′

    59.95

    129

    LOC_Os04g52230-R-qrt

    3′-CTCCTCCTTCTTGCACCTTG-5′

    59.98

    LOC_Os04g44150-F-qrt

    5′-TATCGGTGGCCTACTTCCTG-3′

    60.09

    117

    LOC_Os04g44150-R-qrt

    3′-CGTCTTCCTGCACCTTCTTC-5′

    59.99

    LOC_Os04g52479-F-qrt

    5′-AGCTGACGGTGCATTTATCC-3′

    60.10

    188

    LOC_Os04g52479-R-qrt

    3′-CCATCACAGTCCCAGTTGTG-5′

    60.00

    LOC_Os09g37400-F-qrt

    5′-GGAGGAGTTTGGTTTCACGA-3′

    60.09

    125

    LOC_Os09g37400-R-qrt

    3′-AGCTCAGCAATGCTTTCTCC-5′

    59.72

    LOC_Os03g46610-F-qrt

    5′-CTTTGTCCGGACCTGTGAAT-3′

    59.97

    251

    LOC_Os03g46610-R-qrt

    3′-CCACCCGATGAACATAATCC-5′

    60.01

    LOC_Os02g52040-F-qrt

    5′-CCCATCACAATGACGTACCA-3′

    60.24

    76

    LOC_Os02g52040-R-qrt

    3′-AGTTGCCGTACCAGATGAGG-5′

    60.13

  • Table 2   Performance of flag leaf traits in tillering period and maturing period in ricea)

    性状

    热研2号

    华占

    重组自交系群体

    变幅

    分蘖期

     

    剑叶长(cm)

    34.23±4.88

    37.07±4.18

    34.34±3.80

    24.73~44.06

    剑叶宽(cm)

    1.39±0.28

    1.40±0.22

    1.35±0.23

    0.81~1.92

    剑叶面积(cm²)

    34.75±8.08

    37.38±7.02

    34.18±7.85

    18.67~54.57

    成熟期

     

    剑叶长(cm)

    28.92±2.77

    39.84±5.93**

    36.72±7.34

    22.77~60.48

    剑叶宽(cm)

    1.60±0.07

    1.94±0.09**

    1.90±0.19

    1.41~2.34

    剑叶面积(cm²)

    34.47±4.40

    58.81±10.87**

    52.21±13.12

    25.85~91.41

    *和**分别表示热研2号和华占之间的差异在0.05和0.01水平上显著

  • Table 3   Correlation analysis on flag leaf traits in tillering period and maturing period in ricea)

    性状

    分蘖期剑叶长

    分蘖期剑叶宽

    分蘖期剑叶面积

    成熟期剑叶长

    成熟期剑叶宽

    分蘖期剑叶宽

    0.498**

     

    分蘖期剑叶面积

    0.790**

    0.882**

     

    成熟期剑叶长

    0.479**

    0.741**

    0.697**

     

    成熟期剑叶宽

    0.472**

    0.742**

    0.695**

    0.970**

     

    成熟期剑叶面积

    0.482**

    0.756**

    0.707**

    0.995**

    0.976**

    *和**分别表示热研2号和华占之间的差异在0.05和0.01水平上显著

  • Table 4   QTL mapping and effect analysis results of flag leaf traits in rice

    性状

    QTL

    染色体

    物理区间(bp)

    遗传距离(cM)

    LOD

    分蘖期剑叶长

    qFLL2.1

    2

    31480072~32022924

    134.95~137.27

    2.79

    qFLL2.2

    2

    32985884~33437467

    141.40~143.34

    2.97

    qFLL3.1

    3

    25648379~28465343

    109.95~122.02

    3.90

    qFLL3.2

    3

    28698205~29512289

    123.02~126.51

    3.18

    qFLL4

    4

    22019563~34047320

    94.39~145.95

    6.92

    分蘖期剑叶宽

    qFLW3

    3

    1094~1377228

    0.00~5.90

    4.13

    qFLW4

    4

    22019563~33965282

    94.39~145.60

    4.51

    qFLW5

    5

    7886106~7953781

    33.81~34.10

    3.21

    qFLW6

    6

    3168775~3378992

    13.58~14.48

    3.12

    qFLW7

    7

    28198009~28343951

    120.88~121.50

    2.91

    qFLW8.1

    8

    1430252~1451568

    6.13~6.22

    3.78

    qFLW8.2

    8

    21835074~22202508

    93.60~95.18

    2.59

    qFLW12

    12

    24319945~26364047

    104.25~113.02

    3.32

    分蘖期剑叶面积

    qFLA2

    2

    35381094~35525300

    151.67~152.29

    2.58

    qFLA3.1

    3

    704980~858167

    3.02~3.67

    3.11

    qFLA3.2

    3

    25942748~28465343

    111.21~122.02

    3.91

    qFLA3.3

    3

    30560981~30635853

    131.01~131.33

    2.96

    qFLA4.1

    4

    6679635~6830689

    28.63~29.28

    2.50

    qFLA4.2

    4

    21808212~34047320

    93.49~145.95

    6.37

    qFLA6.1

    6

    8768115~8917905

    37.59~38.23

    3.02

    qFLA7

    7

    28194737~28391395

    120.86~121.71

    3.14

    qFLA8.1

    8

    1206235~1531451

    5.17~6.56

    3.20

    qFLA8.2

    8

    21758584~22286338

    93.27~95.54

    3.16

    qFLA12.1

    12

    25775617~26491119

    110.49~113.56

    3.22

    qFLA12.2

    12

    27098731~27516085

    116.16~117.95

    2.98

    成熟期剑叶长

    qFLL9

    9

    20554623~22230863

    88.11~95.30

    3.67

    成熟期剑叶面积

    qFLA3.4

    3

    7648202~7878205

    32.79~33.78

    2.58

    qFLA3.5

    3

    6823986~6906793

    29.25~29.60

    2.65

    qFLA4.3

    4

    4739169~4886181

    20.31~20.94

    2.63

    qFLA5

    5

    26927610~27082669

    115.43~116.10

    3.75

    qFLA6.2

    6

    27486058~27581098

    117.83~118.23

    2.87

    qFLA9.1

    9

    16630835~16699350

    71.29~71.58

    2.70

    qFLA9.2

    9

    18276737~18429327

    78.35~79.00

    2.74

    qFLA9.3

    9

    18643272~18938534

    80.08~81.18

    2.98

    qFLA9.4

    9

    20416503~22230863

    87.52~95.30

    4.06

  • Table 5   The function of candidate gene

    染色体

    基因名称

    功能

    调控对象

    2

    LOC_Os02g52040

    参与细胞扩增

    AP2转录因子SMOS1

    3

    LOC_Os03g46610

    调控水稻耐热生长

    DEAD-Box RNA解旋酶

    4

    LOC_Os04g52230

    与水稻地上部分生长发育相关

    内根-贝壳杉烯合酶

    4

    LOC_Os04g44150

    调控水稻生长和株型、分蘖的发生和不定根的生长

    赤霉素2氧化酶

    4

    LOC_Os04g52479

    窄叶基因, 影响水稻生长素的极性运输和维管束排列模式

    丝氨酸/半胱氨酸蛋白酶

    9

    LOC_Os09g37400

    生长素、盐、细胞分裂素、缺氧处理或氮水平改变都会迅速诱导表达, 是生长素合成和转运的负调节因子, 过表达则植株生长缓慢, 产量降低

    生长素上调小RNA基因SAUR

    12

    LOC_Os12g42020

    PINOID同源基因, 参与调控水稻生长素的极性运输、形态建成和器官发生的过程

    丝氨酸苏氨酸蛋白激酶

qqqq

Contact and support