logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 10 : 1788-1795(2021) https://doi.org/10.1360/SSTe-2021-0156

基于GPS资料约束的2021年玛多地震发震断层的滑动速率

More info
  • ReceivedJun 7, 2021
  • AcceptedJun 22, 2021
  • PublishedJun 24, 2021

Abstract


Funded by

国家重点研发计划项目(2017YFC1500501,2017YFC1500305)

国家自然科学基金项目(41674023,41304017)


Acknowledgment

感谢责任编委和两位评审专家提出的宝贵修改意见. 文中采用的余震数据来自中国地震台网中心, 地震破裂模型由北京大学张勇研究员提供, 图件采用GMT软件绘制(Wessel和Smith, 1998), 在此一并致谢.


References

[1] 邓起东, 张培震, 冉勇康, 杨晓平, 闵伟, 陈立春. 2003. 中国活动构造与地震活动. 地学前缘, 10: 66–73. Google Scholar

[2] 李陈侠, 徐锡伟, 闻学泽, 郑荣章, 陈桂华, 杨虎, 安艳芬, 高翔. 2011. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用. 中国科学: 地球科学, 41: 1295–1310. Google Scholar

[3] 梁明剑, 杨耀, 杜方, 宫悦, 孙玮, 赵敏, 何强. 2020. 青海达日断裂中段晚第四纪活动性与1947年M7 3/4地震地表破裂带再研究. 地震地质, 3: 703–714. Google Scholar

[4] 王未来, 房立华, 吴建平, 屠泓为, 陈立艺, 来贵娟, 张龙. 2021. 2021年青海玛多Ms7.4地震序列精定位研究. 中国科学: 地球科学, 51: 1193–1202. Google Scholar

[5] 张培震, 邓起东, 张国民, 马瑾, 甘卫军, 闵伟, 毛凤英, 王琪. 2003. 中国大陆的强震活动与活动地块. 中国科学D辑: 地球科学, 33(增刊): 12–20. Google Scholar

[6] 詹艳, 梁明剑, 孙翔宇, 黄飞鹏, 赵凌强, 宫悦, 韩静, 李陈侠, 张培震, 张会平. 2021. 2021年5月22日青海玛多Ms7.4地震深部环境及发震构造模式. 地球物理学报, 64: 2232–2252. Google Scholar

[7] Burchfiel B C, Royden L H, van der Hilst R D, Hager B H, Chen Z, King R W, Li C, Lü J, Yao H, Kirby E. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. Gsa Today, 2008, 18: 4-11 CrossRef Google Scholar

[8] Bao X, Song X, Eaton D W, Xu Y, Chen H. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy. Geophys Res Lett, 47: e2019GL085721. Google Scholar

[9] Duvall A R, Clark M K. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Geology, 2010, 38: 223-226 CrossRef ADS Google Scholar

[10] Diao F, Wang R, Wang Y, Xiong X, Walter T R. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. Earth Planet Sci Lett, 2018, 495: 202-212 CrossRef ADS Google Scholar

[11] Diao F, Xiong X, Wang R, Walter T R, Wang Y, Wang K. Slip rate variation along the Kunlun Fault (Tibet): Results from new GPS observations and a viscoelastic earthquake‐cycle deformation model. Geophys Res Lett, 2019, 46: 2524-2533 CrossRef ADS Google Scholar

[12] Guo J, Lin A, Maruyama T, Zheng J, Sun G. New constraints on recent large earthquakes along the Xidatan-Dongdatan segment of the Kunlun fault, western China. Bull Seismol Soc Am, 2006, 96: 48-58 CrossRef ADS Google Scholar

[13] Guo J, Lin A, Sun G, Zheng J. Surface ruptures associated with the 1937 M7.5 Tuosuo Lake and the 1963 M7.0 Alake Lake Earthquakes and the paleoseismicity along the Tuosuo Lake segment of the Kunlun Fault, Northern Tibet. Bull Seismol Soc Am, 2007, 97: 474-496 CrossRef ADS Google Scholar

[14] Kirby E, Harkins N, Wang E, Shi X, Fan C, Burbank D. Slip rate gradients along the eastern Kunlun fault. Tectonics, 2007, 26: TC2010 CrossRef ADS Google Scholar

[15] Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0—A 1-degree global model of Earth’s crust. Geophys Res Abstracts, 15: Abstract EGU2013-2658. Google Scholar

[16] Li H, Van der Woerd J, Tapponnier P, Klinger Y, Qi X, Yang J, Zhu Y. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw∼7.9 Kokoxili earthquake. Earth Planet Sci Lett, 2005, 237: 285-299 CrossRef ADS Google Scholar

[17] Liu M, Stein S, Wang H. 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries. Lithosphere, 2011, 3: 128-132 CrossRef ADS Google Scholar

[18] Li Y, Huang L, Ding R, Yang S, Liu L, Zhang S, Liu H. 2021. Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards. Natural Hazards Research, doi: 10.1016/j.nhres.2021.06.003. Google Scholar

[19] Reid H F. 1910. The mechanics of the earthquake in the California earthquake of 18 April 1906. Report, Carnegie Institute, Washington DC, 2. Google Scholar

[20] Shan B, Xiong X, Wang R, Zheng Y, Yadav R B S. Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post- and interseismic stress changes. Geophys J Int, 2015, 200: 244-253 CrossRef ADS Google Scholar

[21] Savage J C, Burford R O. Geodetic determination of relative plate motion in central California. J Geophys Res, 1973, 78: 832-845 CrossRef ADS Google Scholar

[22] Shen Z K, Sun J, Zhang P, Wan Y, Wang M, Bürgmann R, Zeng Y, Gan W, Liao H, Wang Q. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat Geosci, 2009, 2: 718-724 CrossRef ADS Google Scholar

[23] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics. Nature, 1976, 264: 319-324 CrossRef ADS Google Scholar

[24] Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671-1677 CrossRef ADS Google Scholar

[25] Van der Woerd J, Tapponnier P, Ryerson F J, Meriaux A S, Meyer B, Gaudemer Y, Finkel R C, Caffee M W, Guoguang Z, Zhiqin X. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys J Int, 2002, 148: 356-388 CrossRef ADS Google Scholar

[26] Wen X, Yi G, Xu X. Background and precursory seismicities along and surrounding the Kunlun fault before the Ms8.1, 2001, Kokoxili earthquake, China. J Asian Earth Sci, 2007, 30: 63-72 CrossRef ADS Google Scholar

[27] Wessel P, Smith W H F. New, improved version of generic mapping tools released. Eos Trans AGU, 1998, 79: 579 CrossRef ADS Google Scholar

[28] Xiong X, Shan B, Zheng Y, Wang R. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 2010, 482: 216-225 CrossRef ADS Google Scholar

[29] Zhang P Z, Wen X Z, Shen Z K, Chen J H. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu Rev Earth Planet Sci, 2010, 38: 353-382 CrossRef ADS Google Scholar

[30] Zhang P Z. Beware of slowly slipping faults. Nat Geosci, 2013, 6: 323-324 CrossRef ADS Google Scholar

  • 图 1

    玛多地震发震区域的构造背景

    左上角插图表示研究区域(红色虚线方框)相对于青藏高原的位置. 红色五角星表示玛多地震的震中, 黑色五角星表示巴颜喀拉块体历史地震的震中. 红色震源球表示玛多地震的震源机制解(GCMT), 黑色震源球表示历史地震的震源机制解(Shan等, 2015; Diao等, 2019). 主图中, 绿色箭头表示相对于亚欧板块的水平向GPS速度, 置信区间95%. 黄色圆点表示玛多地震的余震(中国地震台网), 白色方块表示区域内主要城镇的位置. 黑色粗线表示主要活动断裂, 红色粗线表示发震断裂, 灰线表示次级断裂

  • 图 2

    最佳模拟速度的拟合结果

    红色曲线表示最佳模型给出的模拟速度, 灰色条带表示不确定度区间, 白色圆点表示带有误差棒的观测速度. F1表示发震断裂的位置, F2表示昆仑断裂托索湖段的位置

  • 图 3

    网格搜索结果

    (a) 目标函数值变化(V1 vs. V2), 五角星表示参数的最佳取值; (b)和(c) 基于蒙特卡罗法得到的V1V2的统计分布

  • 图 4

    模型参数的敏感度测试

    每次测试只改变目标参数的取值, 固定其他参数, 对比相应的模拟结果和观测数据之间的拟合程度. 目标参数分别为(a) V1, (b) V2, (c) D1和(d) D2

  • 图 5

    考虑发震断层附近次级断裂的影响

    F3表示达日断裂的位置, V3是达日断裂的滑动速率. (a)~(c)分别代表3D目标函数值变化在(V1 vs. V2), (V2 vs. V3), (V1 vs. V3)方向上的切片; (d) 考虑达日断裂作用得到的最佳模拟速度的拟合结果

qqqq

Contact and support