logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 9 : 1444-1456(2021) https://doi.org/10.1360/SSTe-2020-0305

大地幔楔与克拉通破坏型金矿

More info
  • ReceivedOct 29, 2020
  • AcceptedJan 29, 2021
  • PublishedMar 25, 2021

Abstract


Funding

国家自然科学基金项目(41688103)

科技部重点研发计划“深地资源勘查开采”重点专项项目(2016YFC0600408)

山东省泰山学者项目(ts201712075)

海洋科学与技术试点国家实验室鳌山人才项目(2017ASTCP-OS07)


Acknowledgment

感谢中国科学院地质与地球物理研究所范宏瑞研究员和三位审稿人提出的建议和认真修改的意见.


References

[1] 陈华勇, 吴超. 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50: 865–886. Google Scholar

[2] 侯增谦, 郑远川, 耿元生. 2015. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用. 矿床地质, 34: 641–674. Google Scholar

[3] 李曙光, 汪洋. 2018. 中国东部大地幔楔形成时代和华北克拉通岩石圈减薄新机制——深部再循环碳的地球动力学效应. 中国科学: 地球科学, 48: 809–824. Google Scholar

[4] 马强, 徐义刚. 2017. 东亚中生代岩浆的时空变迁与大地幔楔的形成时间. 北京: 2017年中国地球科学联合学术年会. Google Scholar

[5] 申婷婷, 张立飞, 陈晶. 2016. 俯冲带蛇纹岩的变质过程. 岩石学报, 32: 1206–1218. Google Scholar

[6] 宋明春, 宋英昕, 丁正江, 李世勇. 2018. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26: 406–422. Google Scholar

[7] 夏群科, 程徽, 刘佳. 2017. 山东铁铜沟橄榄岩的水含量: 华北克拉通早白垩世富水岩石圈的分布. 地球科学, 42: 853–861. Google Scholar

[8] 徐义刚, 李洪颜, 洪路兵, 马亮, 马强, 孙明道. 2018. 东亚大地幔楔与中国东部新生代板内玄武岩成因. 中国科学: 地球科学, 48: 825–843. Google Scholar

[9] 翟明国, 范宏瑞, 杨进辉, 苗来成. 2004. 非造山带型金矿——胶东型金矿的陆内成矿作用. 地学前缘, 11: 85–98. Google Scholar

[10] 张国伟, 孟庆任, 赖绍聪. 1995. 秦岭造山带的结构构造. 中国科学B辑: 化学 生命科学 地学, 25: 994–1003. Google Scholar

[11] 张伟波, 叶锦华. 2017. 环太平洋成矿域主要铜-金矿床地质特征、成矿作用及找矿潜力. 地质通报, 36: 1–15. Google Scholar

[12] 赵大鹏, 雷建设, 唐荣余. 2004. 中国东北长白山火山的起源: 地震层析成像证据. 科学通报, 49: 1439–1446. Google Scholar

[13] 郑永飞, 徐峥, 赵子福, 戴立群. 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏. 中国科学: 地球科学, 48: 379–414. Google Scholar

[14] 朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45: 1153–1168. Google Scholar

[15] 朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学: 地球科学, 42: 1135–1159. Google Scholar

[16] 朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学: 地球科学, 49: 1346–1356. Google Scholar

[17] Angel R J, Frost D J, Ross N L, Hemley R. Stabilities and equations of state of dense hydrous magnesium silicates. Phys Earth Planet Inter, 2001, 127181-196 CrossRef Google Scholar

[18] Bali E, Audétat A, Keppler H. Water and hydrogen are immiscible in Earth’s mantle. Nature, 2013, 495220-222 CrossRef PubMed ADS Google Scholar

[19] Blamey N, Campbell A, Heizler M. The hydrothermal fluid evolution of vein sets at the pipeline gold mine, Nevada. Minerals, 2017, 7100 CrossRef Google Scholar

[20] Chen L. Layering of subcontinental lithospheric mantle. Sci Bull, 2017, 621030-1034 CrossRef ADS Google Scholar

[21] Chen L, Faccenda M. Subduction-induced upwelling of a hydrous transition zone: Implications for the cenozoic magmatism in Northeast China. J Geophys Res Solid Earth, 2019, 12411489-11504 CrossRef ADS Google Scholar

[22] Clark Maroun L R, Cline J S, Simon A, Anderson P, Muntean J. High-grade gold deposition and collapse breccia formation, cortez hills Carlin-type gold deposit, Nevada, USA. Econ Geol, 2017, 112707-740 CrossRef Google Scholar

[23] Deng J, Wang C, Bagas L, Carranza E J M, Lu Y. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry. Miner Depos, 2015, 50987-1006 CrossRef ADS Google Scholar

[24] Deng J, Yang L Q, Groves D I, Zhang L, Qiu K F, Wang Q F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci Rev, 2020, 208103274 CrossRef ADS Google Scholar

[25] Dixon J E, Bindeman I N, Kingsley R H, Simons K K, Le Roux P J, Hajewski T R, Swart P, Langmuir C H, Ryan J G, Walowski K J, Wada I, Wallace P J. Light stable isotopic compositions of enriched mantle sources: Resolving the dehydration paradox. Geochem Geophys Geosyst, 2017, 183801-3839 CrossRef ADS Google Scholar

[26] Dong Y, Zhang G, Neubauer F, Liu X, Genser J, Hauzenberger C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J Asian Earth Sci, 2011, 41213-237 CrossRef ADS Google Scholar

[27] Emsbo P, Hofstra A H, Lauha E A, Griffin G L, Hutchinson R W. Origin of high-grade gold ore, source of ore fluid components, and genesis of the meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada. Econ Geol, 2003, 981069-1105 CrossRef Google Scholar

[28] Fan H R, Zhai M G, Xie Y H, Yang J H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner Depos, 2003, 38739-750 CrossRef ADS Google Scholar

[29] Ghaderi N, Zhang H, Sun T. Relative stability and contrasting elastic properties of serpentine polymorphs from first-principles calculations. J Geophys Res Solid Earth, 2015, 1204831-4842 CrossRef ADS Google Scholar

[30] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: A global synthesis. Ore Geol Rev, 2001, 181-75 CrossRef Google Scholar

[31] Goldfarb R J, Phillips G N, Nokleberg W J. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geol Rev, 1998, 13185-218 CrossRef Google Scholar

[32] Green D H, Hibberson W O, Kovács I, Rosenthal A. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 2010, 467448-451 CrossRef ADS Google Scholar

[33] Griffiths R W, Hackney R I, van der Hilst R D. A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth Planet Sci Lett, 1995, 1331-17 CrossRef Google Scholar

[34] Groff J A. Genetic implications of regional vs. fracture-controlled fluid flow in Carlin-type gold deposits, Nevada. Ore Geol Rev, 2020, 117103282 CrossRef Google Scholar

[35] Hausen D M, Kerr P F. 1966. Fine gold occurrence at Carlin Nevada. Econ Geol, 61: 1468–1469. Google Scholar

[36] Hickey K A, Barker S L L, Dipple G M, Arehart G B, Donelick R A. The brevity of hydrothermal fluid flow revealed by thermal halos around giant gold deposits: Implications for Carlin-type gold systems. Econ Geol, 2014, 1091461-1487 CrossRef Google Scholar

[37] Hilairet N, Daniel I, Reynard B. Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophys Res Lett, 2006, 33L02302 CrossRef ADS Google Scholar

[38] Hirose K, Fei Y, Ma Y, Mao H K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 1999, 39753-56 CrossRef ADS Google Scholar

[39] Hoefs J. 2009. Stable Isotope Geochemistry. Heidelberg: Springer. 285. Google Scholar

[40] Holley E A, Lowe J A, Johnson C A, Pribil M J. Magmatic-hydrothermal gold mineralization at the lone tree mine, Battle Mountain District, Nevada. Econ Geol, 2019, 114811-856 CrossRef Google Scholar

[41] Hu F F, Fan H R, Jiang X H, Li X C, Yang K F, Mernagh T. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids, 2013, 13528-541 CrossRef Google Scholar

[42] Hu H L, Fan H R, Santosh M, Liu X, Cai Y C, Yang K F. Ore-forming processes in the Wang’ershan gold deposit (Jiaodong, China): Insight from microtexture, mineral chemistry and sulfur isotope compositions. Ore Geol Rev, 2020, 123103600 CrossRef Google Scholar

[43] Huang R, Keppler H. Anhydrite stability and the effect of Ca on the behavior of sulfur in felsic magmas. Am Miner, 2015, 100257-266 CrossRef ADS Google Scholar

[44] Ilchik R P, Barton M D. An amagmatic origin of Carlin-type gold deposits. Econ Geol, 1997, 92269-288 CrossRef Google Scholar

[45] Jahn B M, Wu F, Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 2000, 57123-132 CrossRef Google Scholar

[46] Kusky T M, Windley B F, Wang L, Wang Z, Li X, Zhu P. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 2014, 630208-221 CrossRef ADS Google Scholar

[47] Large R R, Bull S W, Maslennikov V V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol, 2011, 106331-358 CrossRef Google Scholar

[48] Large S J E, Bakker E Y N, Weis P, Wälle M, Ressel M, Heinrich C A. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend. Geology, 2016, 441015-1018 CrossRef ADS Google Scholar

[49] Lee C T A, Chen W P. Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth’s mantle. Earth Planet Sci Lett, 2007, 255357-366 CrossRef ADS Google Scholar

[50] Li C Y, Sun S J, Guo X, Zhu H L. Recent progresses in plate subduction and element recycling. Solid Earth Sci, 2020, 51-7 CrossRef Google Scholar

[51] Li J W, Paulo V, Zhou M F, Zhao X F, Ma C Q. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Econ Geol, 2006, 1011023-1038 CrossRef Google Scholar

[52] Li J W, Vasconcelos P M, Zhang J, Zhou M F, Zhang X J, Yang F H. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong Gold Province, Eastern China. J Geol, 2003, 111741-751 CrossRef ADS Google Scholar

[53] Li J, Yuen D A. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet Sci Lett, 2014, 385137-144 CrossRef ADS Google Scholar

[54] Li S, Wang S, Chen Y, Liu D, Qiu J, Zhou H, Zhang Z. Excess argon in phengite from eclogite: Evidence from dating of eclogite minerals by Sm-Nd, Rb-Sr and 40Ar39Ar methods. Chem Geol, 1994, 112343-350 CrossRef Google Scholar

[55] Li S, Xiao Y, Liou D, Chen Y, Ge N, Zhang Z, Sun S, Cong B, Zhang R, Hart S R, Wang S. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem Geol, 1993, 10989-111 CrossRef Google Scholar

[56] Li Z H. Flat subduction versus big mantle wedge: Contrasting modes for deep hydration and overriding craton modification. J Geophys Res Solid Earth, 2020, 125e20018 CrossRef ADS Google Scholar

[57] Ling M X, Liu Y L, Williams I S, Teng F Z, Yang X Y, Ding X, Wei G J, Xie L H, Deng W F, Sun W D. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Sci Rep, 2013, 31776 CrossRef ADS Google Scholar

[58] Liu H, Liao R, Zhang L, Li C, Sun W. Plate subduction, oxygen fugacity, and mineralization. J Ocean Limnol, 2020a, 3864-74 CrossRef ADS Google Scholar

[59] Liu J, Zhao G, Xu G, Sha D, Xiao C, Fang X, Liu F, Guo Q, Yu H. Structural control and genesis of gold deposits in the Liaodong Peninsula, northeastern North China Craton. Ore Geol Rev, 2020b, 125103672 CrossRef Google Scholar

[60] Liu L, Morgan J P, Xu Y, Menzies M. Craton destruction 1: Cratonic keel delamination along a weak midlithospheric discontinuity layer. J Geophys Res Solid Earth, 2018, 12310040 CrossRef ADS Google Scholar

[61] Liu L, Spasojevic S, Gurnis M. Reconstructing farallon plate subduction beneath North America back to the Late Cretaceous. Science, 2008, 322934-938 CrossRef ADS Google Scholar

[62] Liu L, Stegman D R. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 2012, 482386-389 CrossRef ADS Google Scholar

[63] Liu S, Xia Q. Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains: Implications for the destruction of the North China Craton. Chin Sci Bull, 2014, 591362-1365 CrossRef ADS Google Scholar

[64] Ma Q, Xu Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia. Earth-Sci Rev, 2021, 213103473 CrossRef ADS Google Scholar

[65] Ma W D, Fan H R, Liu X, Pirajno F, Hu F F, Yang K F, Yang Y H, Xu W G, Jiang P. Geochronological framework of the Xiadian gold deposit in the Jiaodong province, China: Implications for the timing of gold mineralization. Ore Geol Rev, 2017, 86196-211 CrossRef Google Scholar

[66] Mao J, Goldfarb R J, Zhang Z, Xu W, Qiu Y, Deng J. Gold deposits in the Xiaoqinling-Xiong’ershan region, Qinling Mountains, central China. Miner Depos, 2002, 37306-325 CrossRef ADS Google Scholar

[67] McDonough W F, Sun S S. The composition of the Earth. Chem Geol, 1995, 120223-253 CrossRef Google Scholar

[68] Meng L Q, Mao G Z, Liu X T, An P R, Cao M P, Wang X J, He T L, Song L G, Dou Y X. Geochemical studies of the Nanxiaoyao gold deposit in central Yishu fault zone, Shandong province, Eastern China. Solid Earth Sci, 2020, 569-80 CrossRef Google Scholar

[69] Meng Q R, Zhang G W. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 1999, 27123-126 CrossRef Google Scholar

[70] Micklethwaite S, Cox S F. Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology, 2004, 32813-816 CrossRef ADS Google Scholar

[71] Muntean J L, Cline J S, Simon A C, Longo A A. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat Geosci, 2011, 4122-127 CrossRef ADS Google Scholar

[72] Nestola F, Angel R J, Zhao J, Garrido C J, Sánchez-Vizcaíno V L, Capitani G, Mellini M. Antigorite equation of state and anomalous softening at 6 GPa: An in situ single-crystal X-ray diffraction study. Contrib Mineral Petrol, 2010, 16033-43 CrossRef ADS Google Scholar

[73] Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geol J China Univ, 11: 9–46. Google Scholar

[74] Niu Y, O’Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res, 2003, 1082209 CrossRef ADS Google Scholar

[75] Ohtani E, Zhao D P. The role of water in the deep upper mantle and transition zone: Dehydration of stagnant slabs and its effects on the big mantle wedge. Rus Geol Geophys, 2009, 501073-1078 CrossRef ADS Google Scholar

[76] Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 2014, 507221-224 CrossRef ADS Google Scholar

[77] Perrillat J P, Daniel I, Koga K T, Reynard B, Cardon H, Crichton W A. Kinetics of antigorite dehydration: A real-time X-ray diffraction study. Earth Planet Sci Lett, 2005, 236899-913 CrossRef ADS Google Scholar

[78] Qiu Y M, Groves D I, McNaughton N J, Wang L G, Zhou T H. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Miner Depos, 2002, 37283-305 CrossRef Google Scholar

[79] Ringwood A E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta, 1991, 552083-2110 CrossRef Google Scholar

[80] Schmid C, Goes S, van der Lee S, Giardini D. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet Sci Lett, 2002, 20417-32 CrossRef Google Scholar

[81] Schmidt M W. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 1996, 2721927-1930 CrossRef ADS Google Scholar

[82] Song M C, Li S Z, Santosh M, Zhao S, Yu S, Yi P H, Cui S X, Lv G X, Xu J X, Song Y X, Zhou M L. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geol Rev, 2015, 65612-625 CrossRef Google Scholar

[83] Sun W D, Arculus R J, Kamenetsky V S, Binns R A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 2004, 431975-978 CrossRef ADS Google Scholar

[84] Sun W D, Ding X, Hu Y H, Li X H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 2007, 262533-542 CrossRef ADS Google Scholar

[85] Sun W D, Huang R F, Li H, Hu Y B, Zhang C C, Sun S J, Zhang L P, Ding X, Li C Y, Zartman R E, Ling M X. Porphyry deposits and oxidized magmas. Ore Geol Rev, 2015, 6597-131 CrossRef Google Scholar

[86] Sun W D, Li S G, Chen Y D, Li Y J. Timing of synorogenic granitoids in the South Qinling, Central China: Constraints on the evolution of the Qinling-Dabie Orogenic Belt. J Geol, 2002a, 110457-468 CrossRef ADS Google Scholar

[87] Sun W D, Li S G, Sun Y, Zhang G W, Li Q L. Mid-Paleozoic collision in the north Qinling: Sm-Nd, Rb-Sr and 40Ar/39Ar ages and their tectonic implications. J Asian Earth Sci, 2002b, 2169-76 CrossRef Google Scholar

[88] Sun W D, Li S G, Yang X Y, Ling M X, Ding X, Duan L A, Zhan M Z, Zhang H, Fan W M. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. Int Geol Rev, 2013, 55311-321 CrossRef ADS Google Scholar

[89] Sun W D, Williams I S, Li S G. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: Evidence for protracted convergence of the North and South China Blocks. J Metamorph Geol, 2002c, 20873-886 CrossRef ADS Google Scholar

[90] Sun W D, Zhang L P, Li H, Liu X. The synchronic Cenozoic subduction initiations in the west Pacific induced by the closure of the Neo-Tethys Ocean. Sci Bull, 2020a, 652068-2071 CrossRef ADS Google Scholar

[91] Sun W D, Zhang L, Liao R, Sun S, Li C, Liu H. Plate convergence in the Indo-Pacific region. J Ocean Limnol, 2020b, 381008-1017 CrossRef ADS Google Scholar

[92] Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. The global range of subduction zone thermal models. Phys Earth Planet Inter, 2010, 18373-90 CrossRef ADS Google Scholar

[93] Thompson J F H, Sillitoe R H, Baker T, Lang J R, Mortensen J K. Intrusion-related gold deposits associated with tungsten-tin provinces. Miner Depos, 1999, 34323-334 CrossRef ADS Google Scholar

[94] Tomkins A G. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochim Cosmochim Acta, 2010, 743246-3259 CrossRef ADS Google Scholar

[95] Ulmer P, Trommsdorff V. Serpentine stability to mantle depths and subduction-related magmatism. Science, 1995, 268858-861 CrossRef ADS Google Scholar

[96] van Keken P E, Hacker B R, Syracuse E M, Abers G A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 2011, 116B01401 CrossRef ADS Google Scholar

[97] Wang Y, He Y, Lu G, Wen L. Seismic, thermal and compositional structures of the stagnant slab in the mantle transition zone beneath southeastern China. Tectonophysics, 2020, 775228208 CrossRef ADS Google Scholar

[98] Wang Y Y, Xiao Y. Fluid-controlled element transport and mineralization in subduction zones. Solid Earth Sci, 2018, 387-104 CrossRef Google Scholar

[99] Wang Z L, Yang L Q, Guo L N, Marsh E, Wang J P, Liu Y, Zhang C, Li R H, Zhang L, Zheng X L, Zhao R X. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geol Rev, 2015, 65701-717 CrossRef Google Scholar

[100] Wei S S, Wiens D A, van Keken P E, Cai C. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration. Sci Adv, 2017, 3e1601755 CrossRef ADS Google Scholar

[101] Wen B J, Fan H R, Santosh M, Hu F F, Pirajno F, Yang K F. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geol Rev, 2015, 65643-658 CrossRef Google Scholar

[102] Wu F Y, Zhao G C, Sun D Y, Wilde S A, Yang J H. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J Asian Earth Sci, 2007, 30542-556 CrossRef ADS Google Scholar

[103] Wu K, Ling M X, Sun W D, Guo J, Zhang C C. Major transition of continental basalts in the Early Cretaceous: Implications for the destruction of the North China Craton. Chem Geol, 2017, 47093-106 CrossRef ADS Google Scholar

[104] Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 2013, 36185-97 CrossRef ADS Google Scholar

[105] Xiao W, Windley B F, Hao J, Zhai M. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 2003, 221069 CrossRef ADS Google Scholar

[106] Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 2005, 218339-359 CrossRef ADS Google Scholar

[107] Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 2001, 26747-757 CrossRef Google Scholar

[108] Yamamoto K, Akimoto S. The system MgO-SiO2-H2O at high pressures and temperatures—Stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10Å-phase. Am J Sci, 1977, 277288-312 CrossRef ADS Google Scholar

[109] Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 2001, 29711-714 CrossRef Google Scholar

[110] Yang K F, Jiang P, Fan H R, Zuo Y B, Yang Y H. Tectonic transition from a compressional to extensional metallogenic environment at ∼120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton. J Asian Earth Sci, 2018, 160408-425 CrossRef ADS Google Scholar

[111] Yang L, Deng J, Guo C, Zhang J, Jiang S, Gao B, Gong Q, Wang Q. Ore-Forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong Gold Province, China. Resour Geol, 2009, 59181-193 CrossRef Google Scholar

[112] Yang W, Teng F Z, Zhang H F, Li S G. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 2012, 328185-194 CrossRef ADS Google Scholar

[113] Zhai M, Zhu X, Zhou Y, Zhao L, Zhou L. Continental crustal evolution and synchronous metallogeny through time in the North China Craton. J Asian Earth Sci, 2020, 194104169 CrossRef ADS Google Scholar

[114] Zhang L, Weinberg R F, Yang L Q, Groves D I, Sai S X, Matchan E, Phillips D, Kohn B P, Miggins D P, Liu Y, Deng J. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120±2 Ma during cooling of pregold granite intrusions. Econ Geol, 2020a, 115415-441 CrossRef Google Scholar

[115] Zhang Z K, Ling M X, Lin W, Sun M, Sun W. “Yanshanian Movement” induced by the westward subduction of the paleo-Pacific plate. Solid Earth Sci, 2020b, 5103-114 CrossRef Google Scholar

[116] Zhang Z, Ling M, Zhang L, Sun S, Sun W. High oxygen fugacity magma: Implication for the destruction of the North China Craton. Acta Geochim, 2020c, 39161-171 CrossRef Google Scholar

[117] Zhao D, Tian Y, Lei J, Liu L, Zheng S. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys Earth Planet Inter, 2009, 173197-206 CrossRef ADS Google Scholar

[118] Zheng Y, Mao J, Chen Y, Sun W, Ni P, Yang X. Hydrothermal ore deposits in collisional orogens. Sci Bull, 2019, 64205-212 CrossRef ADS Google Scholar

[119] Zheng Y F, Xiao W J, Zhao G. Introduction to tectonics of China. Gondwana Res, 2013, 231189-1206 CrossRef ADS Google Scholar

[120] Zhou T, Lü G. Tectonics, granitoids and mesozoic gold deposits in East Shandong, China. Ore Geol Rev, 2000, 1671-90 CrossRef Google Scholar

[121] Zhu R, Zhang H, Zhu G, Meng Q, Fan H, Yang J, Wu F, Zhang Z, Zheng T. Craton destruction and related resources. Int J Earth Sci-Geol Rundsch, 2017, 1062233-2257 CrossRef ADS Google Scholar

  • 图 1

    内华达克拉通破坏型金矿分布

    修改自Muntean等(2011)朱日祥等(2015)

  • 图 2

    俯冲洋壳和地幔橄榄岩密度随深度变化曲线

    修改自Hirose等(1999). 地幔橄榄岩在660km发生相变, 林伍德石转变为镁布里吉曼石, 密度迅速升高. 俯冲洋壳的主要相变发生在720km, 高压相石榴子石——梅杰石, 转变为富铁布里吉曼石, 密度超过镁布里吉曼石. 在660~720km, 俯冲板片的密度小于周围地幔, 因此俯冲板片可以滞留在上地幔的底部, 形成大地幔楔

  • 图 3

    不同蛇纹石稳定域图解

    Ghaderi等(2015)申婷婷等(2016)Angel等(2001)修改. 红色线为利蛇纹石(Liz)和叶蛇纹石(Atg)的相变边界(Ghaderi等, 2015): 利蛇纹石(Liz)→叶蛇纹石(Atg)+氢氧镁石(Brc); 绿色虚线为无水条件下叶蛇纹石自身脱水线(Perrillat等, 2005); 浅蓝色线为叶蛇纹石最大稳定域边界(Hilairet等, 2006; Nestola等, 2010). 叶蛇纹石脱水发生三个反应: 叶蛇纹石(Atg)→滑石(Tlc)+橄榄石(Ol)+H2O(压力一般小于2GPa); 叶蛇纹石(Atg)→橄榄石(Ol)+斜方辉石(En)+H2O; 叶蛇纹石(Atg)→斜方辉石(En)+phase A+H2O(压力一般大于5GPa)(Ulmer和Trommsdorff, 1995; 申婷婷等, 2016). 叶蛇纹石分解会形成phase A, 通过高温高压实验, 在MgO-SiO2-H2O条件下, phase A与镁橄榄石等反应会形成phase B等(灰色虚线) (Yamamoto和Akimoto, 1977). 温度压力持续升高也会产生phases D和E以及压力可以达到29GPa的superhydrous phase B, 而且在一定温度压力下会转变为含水矿物瓦兹利石(Wad)、林伍德石(Rw)以及其他高压矿物(深蓝色实线和虚线), 绿色阴影为phase A的稳定区域; 蓝色阴影为phase B及其他高压含水矿物稳定区域(Angel等, 2001). 灰色虚线为冷俯冲地温梯度和热俯冲地温梯度(Dixon等, 2017; Ghaderi等, 2015; Syracuse等, 2010; van Keken等, 2011), 蛇纹石层位于俯冲板片的中心, 通常属于冷俯冲. Superhydrous phase B指超富水的phase B

  • 图 4

    东亚大地幔楔形成和富金流体富集模式图

    (a) 在130Ma以前, 俯冲洋壳和蛇纹岩的脱水主要发生在200km以浅, 滞留在地幔过渡带的俯冲板片被逐渐加热, 高压含水相发生进一步变质脱水(详见图3). (b) 在125Ma之后, 俯冲板片在~660km以浅滞留并在该深度再次脱水. 其中, 黄铁矿(FeS2)转变为磁黄铁矿(FeS)的过程中释放出富硫流体, 并萃取金等亲硫元素形成富金流体, 在岩石圈地幔100km以浅, 被韭闪石所吸收, 形成富水富金弱化层, 对克拉通破坏和金爆发成矿具有重要的意义. 图中绿色箭头代表俯冲板片释放出的流体, 黑色箭头代表俯冲板片形态的改变, 浅蓝色区域代表俯冲板片从平俯冲到滞留的过渡形态

  • 图 5

    地热梯度和二辉橄榄岩固相线(a)及二辉橄榄岩的储水能力(b)

    图片修改自Green等(2010). 图中的水饱和二辉橄榄岩的固相线与大洋地热梯度线相交于90km处, 但是并不与克拉通地热线相交, 因此加水并不能使克拉通岩石圈发生部分熔融. 板块俯冲释放的水少量储存在大地幔楔“名义上无水矿物”中, 大部分储存在岩石圈地幔的含水矿物中

  • 图 6

    克拉通破坏型金矿成因模式图

    克拉通破坏过程中, 岩石圈地幔中含水矿物受热分解, 短时间内释放出大量的富金流体, 加速克拉通破坏, 形成爆发式克拉通破坏型金矿

  • 图 7

    重要氧逸度缓冲线对应的氧逸度(a)及克拉通破坏型金矿与主要矿床类型氧逸度对比图(b)

    克拉通破坏型金矿的形成温度通常在400℃以下, 对应成矿流体的logfO2在−30以下, 属于还原性矿床. 前人估计造山型金矿氧逸度跟钨矿接近(Thompson等, 1999). 考虑到其流体包裹体中甲烷的存在, 其成矿流体氧逸度范围也应该低于磁铁矿型/钛铁矿型花岗岩的氧逸度界线, 属于还原性矿床. 背景图据Liu等(2020a)Sun等(2015)Thompson等(1999)修改

qqqq

Contact and support