logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 5 : 741-752(2021) https://doi.org/10.1360/SSTe-2020-0287

南雄盆地白垩纪-古近纪(K-Pg)界线位置探讨——来自火山活动及古气候演化的证据

More info
  • ReceivedOct 19, 2020
  • AcceptedFeb 2, 2021
  • PublishedMar 3, 2021

Abstract


Funded by

国家自然科学基金项目(41602185,41772180)

国际地球科学计划项目(IGCP,679)

福建师范大学创新团队项目(IRTL1705)


Acknowledgment

感谢两位审稿专家提出的建设性修改意见, 感谢中国科学院南京地理与湖泊研究所张恩楼研究员与朱育新副研究员对总汞含量测试的支持和帮助.


References

[1] 江小均, 柳永清, 姬书安, 张兴辽, 徐莉, 贾松海, 吕君昌, 袁崇喜, 李明. 2011. 豫西栾川-潭头盆地含脊椎动物化石地层序列和K/T界线初步研究. 中国科学: 地球科学, 41: 738–744. Google Scholar

[2] 李莎, 高琴琴, 张翼翼, 屈海英, 王曼艳, 万晓樵. 2013. 松辽盆地“松科1井(北孔)”晚白垩世晚期至古新世早期轮藻化石组合. 微体古生物学报, 30: 1–16. Google Scholar

[3] 李伟同, 刘耕武, Braman D R, 曹卫生, 陈钦保, Brinkman D. 2010. 湖北当阳陆相白垩系-古近系界线层型问题值得深入研究. 地层学杂志, 34: 187–206. Google Scholar

[4] 李伟同, 刘耕武, Braman D R, 李艺斌, 曹卫生, Brinkman D, 沈娇, 陈钦保. 2014. 中国新生界第一阶潜在的层型剖面. 中国科学: 地球科学, 44: 634–641. Google Scholar

[5] 刘耕武, Braman, D R, 李伟同, Brinkman D. 2009. 北美西部陆相白垩系-古近系界线孢粉学特征简介——兼评中国东部白垩系-古近系界线研究. 地层学杂志, 33: 18–34. Google Scholar

[6] 凌秋贤, 张显球, 林建南. 2005. 南雄盆地白垩纪-古近纪地层研究进展. 地层学杂志, 29(增刊): 596–601. Google Scholar

[7] 舒良树, 邓平, 王彬, 谭正中, 余心起, 孙岩. 2004. 南雄-诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约. 中国科学D辑: 地球科学, 34: 1–13. Google Scholar

[8] 孙革. 2014. 黑龙江嘉荫晚白垩世-古新世生物群、K-Pg界线及恐龙灭绝. 上海: 上海科技教育出版社. 188. Google Scholar

[9] 童永生, 李曼英, 李茜. 2002. 广东南雄盆地白垩系-古近系界线. 地质通报, 21: 668–674. Google Scholar

[10] 童永生, 李茜, 王元青. 2013. 中国早古近纪陆相地层划分框架研究. 地层学杂志, 37: 428–440. Google Scholar

[11] 王尹. 2012. 南雄盆地晚白垩世-早古新世古气候变化. 硕士学位论文. 南京: 南京大学. 1–60. Google Scholar

[12] 王尹, 李祥辉, 周勇, 刘玲. 2015. 南雄盆地晚白垩世-古新世陆源沉积组份变化的古气候指示. 沉积学报, 33: 116–123. Google Scholar

[13] 席党鹏, 万晓樵, 李国彪, 李罡. 2019. 中国白垩纪综合地层和时间框架. 中国科学: 地球科学, 499: 257–288. Google Scholar

[14] 余汶, 顾和林, 张显球. 1990. 广东南雄盆地晚白垩世-早第三纪非海相腹足类组合序列. 古生物学报, 29: 160–182, 263–266. Google Scholar

[15] 赵资奎, 叶捷, 李华梅, 赵振华, 严正. 1991. 广东省南雄盆地白垩系-第三系交界恐龙绝灭问题. 古脊椎动物学报, 29: 1–12. Google Scholar

[16] 赵资奎, 严正. 2000. 广东南雄盆地白垩系-第三系界线剖面恐龙蛋壳稳定同位素记录: 地层及古环境意义. 中国科学D辑: 地球科学, 30: 135–141. Google Scholar

[17] 赵资奎, 毛雪瑛, 柴之芳, 杨高创, 张福威, 严正. 2009. 广东省南雄盆地白垩纪-古近纪 (K/T) 过渡时期地球化学环境变化和恐龙灭绝: 恐龙蛋化石提供的证据. 科学通报, 54: 201–209. Google Scholar

[18] 赵资奎, 叶捷, 王强. 2017. 南雄盆地白垩纪-古近纪交界恐龙灭绝和哺乳动物复苏. 科学通报, 17: 1869–1881. Google Scholar

[19] 张显球. 1984. 南雄盆地坪岭剖面罗佛寨群的划分及其生物群. 地层学杂志, 8: 239–254. Google Scholar

[20] 张显球. 1992. 广东南雄盆地上湖组介形类动物群及白垩-第三系界线. 古生物学报, 31: 678–702, 773–776. Google Scholar

[21] 张显球, 黎三松, 李永丰. 2000. 南雄盆地西部地区地层研究新进展. 广东地质, 15: 9–18. Google Scholar

[22] 张显球, 凌秋贤. 2004. 南雄盆地白垩-古近系(E/K)界线研究现状. 第九届中国古脊椎动物学学术年会. 45–52. Google Scholar

[23] 张显球, 林建南, 李罡, 凌秋贤. 2006. 南雄盆地大塘白垩系-古近系界线剖面研究. 地层学杂志, 30: 327–340. Google Scholar

[24] 张显球, 张喜满, 侯明才, 李罡, 黎汉明. 2013. 南雄盆地红层岩石地层划分. 地层学杂志, 37: 57–67. Google Scholar

[25] 张显球, 李罡. 2015. 南雄盆地上湖组坪岭段的时代探讨. 地层学杂志, 39: 74–80. Google Scholar

[26] Abramovich S, Keller G, Stüben D, Berner Z. Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 202: 1-29 CrossRef Google Scholar

[27] Bagnato E, Aiuppa A, Parello F, Allard P, Shinohara H, Liuzzo M, Giudice G. New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bull Volcanol, 2011, 73: 497-510 CrossRef ADS Google Scholar

[28] Buck B J, Hanson A D, Hengst R A, Shu-Sheng H. “Tertiary dinosaurs” in the Nanxiong Basin, Southern China, are reworked from the Cretaceous. J Geol, 2004, 112: 111-118 CrossRef ADS Google Scholar

[29] Cerling T E, Quade J, Wang Y, Bowman J R. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 1989, 341: 138-139 CrossRef ADS Google Scholar

[30] Cerling T E, Quade J. 1993. Stable carbon isotopes in soil carbonates. In: Swart P K, Lohmann K C, McKenzie J, Savin S, eds. Climate Change in Continental Isotopic Records. Washington DC: American Geophysical Union. Google Scholar

[31] Clyde W C, Ting S, Snell K E, Bowen G J, Tong Y, Koch P L, Li Q, Wang Y. New paleomagnetic and stable-isotope results from the Nanxiong Basin, China: Implications for the K/T boundary and the timing of Paleocene mammalian turnover. J Geol, 2010, 118: 131-143 CrossRef ADS Google Scholar

[32] Coccioni R, Frontalini F, Bancalà G, Fornaciari E, Jovane L, Sprovieri M. The Dan-C2 hyperthermal event at Gubbio (Italy): Global implications, environmental effects, and cause(s). Earth Planet Sci Lett, 2010, 297: 298-305 CrossRef ADS Google Scholar

[33] Erben H K, Ashraf A R, Bohm H, Hambach U, Krumsiek K, Stets J, Thein J, Wurster P. 1995. Die Kreide/Tertiar-Grenze im Nanxiong-Becken (Kontinentalfazies, Sudostchina). Erdwissenschaftliche Forschung, 32: 1–245. Google Scholar

[34] Font E, Adatte T, Sial A N, Drude de Lacerda L, Keller G, Punekar J. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, 2016, 44: 171-174 CrossRef ADS Google Scholar

[35] Font E, Adatte T, Andrade M, Keller G, Mbabi Bitchong A, Carvallo C, Ferreira J, Diogo Z, Mirão J. Deccan volcanism induced high-stress environment during the Cretaceous-Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records. Earth Planet Sci Lett, 2018, 484: 53-66 CrossRef ADS Google Scholar

[36] Gao Y, Ibarra D E, Wang C, Caves J K, Chamberlain C P, Graham S A, Wu H. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 2015, 43: 287-290 CrossRef ADS Google Scholar

[37] Grasby S E, Beauchamp B, Bond D P G, Wignall P, Talavera C, Galloway J M, Piepjohn K, Reinhardt L, Blomeier D. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geol Soc Am Bull, 2015, 127: 1331-1347 CrossRef ADS Google Scholar

[38] Grasby S E, Them Ii T R, Chen Z, Yin R, Ardakani O H. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Sci Rev, 2019, 196: 102880 CrossRef ADS Google Scholar

[39] Hull P M, Bornemann A, Penman D E, Henehan M J, Norris R D, Wilson P A, Blum P, Alegret L, Batenburg S J, Bown P R, Bralower T J, Cournede C, Deutsch A, Donner B, Friedrich O, Jehle S, Kim H, Kroon D, Lippert P C, Loroch D, Moebius I, Moriya K, Peppe D J, Ravizza G E, Röhl U, Schueth J D, Sepúlveda J, Sexton P F, Sibert E C, Śliwińska K K, Summons R E, Thomas E, Westerhold T, Whiteside J H, Yamaguchi T, Zachos J C. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 2020, 367: 266-272 CrossRef PubMed ADS Google Scholar

[40] Keller G. 2011. Defining the Cretaceous-Tertiary boundary: A practical guide and return to first principles. In: Keller G, Adatte T, eds. The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas. Tulsa: Society for Sedimentary Geology. 23–42. Google Scholar

[41] Keller G, Mateo P, Punekar J, Khozyem H, Gertsch B, Spangenberg J, Bitchong A M, Adatte T. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. Gondwana Res, 2018, 56: 69-89 CrossRef ADS Google Scholar

[42] Keller G, Mateo P, Monkenbusch J, Thibault N, Punekar J, Spangenberg J E, Abramovich S, Ashckenazi-Polivoda S, Schoene B, Eddy M P, Samperton K M, Khadri S F R, Adatte T. Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction. Glob Planet Chang, 2020, 194: 103312 CrossRef ADS Google Scholar

[43] Li G, Hirano H, Batten D J, Wan X, Willems H, Zhang X. Biostratigraphic significance of spinicaudatans from the Upper Cretaceous Nanxiong Group in Guangdong, South China. Cretac Res, 2010, 31: 387-395 CrossRef Google Scholar

[44] Li L, Keller G. Abrupt deep-sea warming at the end of the Cretaceous. Geology, 1998, 26: 995-998 CrossRef Google Scholar

[45] Li X, Xu W, Liu W, Zhou Y, Wang Y, Sun Y, Liu L. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 171-189 CrossRef ADS Google Scholar

[46] Li X, Zhang C, Li Y, Wang Y, Liu L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res, 2019, 66: 143-167 CrossRef ADS Google Scholar

[47] Ma M, Liu X, Wang W. Palaeoclimate evolution across the Cretaceous-Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records. Clim Past, 2018, 14: 287-302 CrossRef ADS Google Scholar

[48] McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Processes controlling the composition of clastic sediments. Spec Pap Geol Soc Am, 284: 21–40. Google Scholar

[49] Molina J M, Vera J A, Aguado R. 2006. Reworked microcodium calcarenites interbedded in pelagic sedimentary rocks (Paleocene, Subbetic, Southern Spain): Paleoenvironmental reconstruction. Spec Pap Geol Soc Am, 416: 189–202. Google Scholar

[50] Nesbitt H W, Markovics G, price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta, 1980, 44: 1659-1666 CrossRef Google Scholar

[51] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299: 715-717 CrossRef ADS Google Scholar

[52] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta, 1984, 48: 1523-1534 CrossRef Google Scholar

[53] Nordt L, Atchley S, Dworkin S. Terrestrial evidence for two greenhouse events in the Latest Cretaceous. GSA Today, 2003, 13: 4-9 CrossRef Google Scholar

[54] Pyle D M, Mather T A. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ, 2003, 37: 5115-5124 CrossRef ADS Google Scholar

[55] Quade J, Rech J A, Latorre C, Betancourt J L, Gleeson E, Kalin M T K. Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochim Cosmochim Acta, 2007, 71: 3772-3795 CrossRef ADS Google Scholar

[56] Quillévéré F, Norris R D, Kroon D, Wilson P A. Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet Sci Lett, 2008, 265: 600-615 CrossRef ADS Google Scholar

[57] Renne P R, Deino A L, Hilgen F J, Kuiper K F, Mark D F, Mitchell W S, Morgan L E, Mundil R, Smit J. Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 2013, 339: 684-687 CrossRef PubMed ADS Google Scholar

[58] Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 2019, 363: 862-866 CrossRef PubMed ADS Google Scholar

[59] Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A F, Gulick S P S, Johnson K R, Kiessling W, Koeberl C, Kring D A, Macleod K G, Matsui T, Melosh J, Montanari A, Morgan J V, Neal C R, Norris R D, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. Response-Cretaceous Extinctions. Science, 2010, 328: 975-976 CrossRef Google Scholar

[60] Shen J, Algeo T J, Planavsky N J, Yu J, Feng Q, Song H, Song H, Rowe H, Zhou L, Chen J. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction. Earth-Sci Rev, 2019a, 195: 191-212 CrossRef ADS Google Scholar

[61] Shen J, Chen J, Algeo T J, Yuan S, Feng Q, Yu J, Zhou L, O’Connell B, Planavsky N J. Evidence for a prolonged Permian-Triassic extinction interval from global marine mercury records. Nat Commun, 2019b, 10: 1563 CrossRef PubMed ADS Google Scholar

[62] Shen J, Yu J, Chen J, Algeo T J, Xu G, Feng Q, Shi X, Planavsky N J, Shu W, Xie S. Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition. Geology, 2019c, 47: 1117-1121 CrossRef ADS Google Scholar

[63] Shen J, Algeo T J, Chen J, Planavsky N J, Feng Q, Yu J, Liu J. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin. Earth Planet Sci Lett, 2019d, 511: 130-140 CrossRef ADS Google Scholar

[64] Shen J, Feng Q, Algeo T J, Liu J, Zhou C, Wei W, Liu J, Them Ii T R, Gill B C, Chen J. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy. Earth Planet Sci Lett, 2020, 543: 116333 CrossRef ADS Google Scholar

[65] Sial A N, Lacerda L D, Ferreira V P, Frei R, Marquillas R A, Barbosa J A, Gaucher C, Windmöller C C, Pereira N S. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous-Paleogene transition. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 387: 153-164 CrossRef Google Scholar

[66] Sial A N, Chen J, Lacerda L D, Peralta S, Gaucher C, Frei R, Cirilli S, Ferreira V P, Marquillas R A, Barbosa J A, Pereira N S, Belmino I K C. High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous-Paleogene Boundary impact event. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 414: 98-115 CrossRef ADS Google Scholar

[67] Sial A N, Chen J, Lacerda L D, Frei R, Tewari V C, Pandit M K, Gaucher C, Ferreira V P, Cirilli S, Peralta S, Korte C, Barbosa J A, Pereira N S. Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretac Res, 2016, 66: 60-81 CrossRef Google Scholar

[68] Silva M V N, Sial A N, Barbosa J A, Ferreira V P, Neumann V H, De Lacerda L D. Carbon isotopes, rare-earth elements and mercury geochemistry across the K-T transition of the Paraíba Basin, northeastern Brazil. Geol Soc London Spec Publ, 2013, 382: 85-104 CrossRef ADS Google Scholar

[69] Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S, Mittal T. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 2019, 363: 866-870 CrossRef PubMed ADS Google Scholar

[70] Stets J, Ashraf A, Erben H K, Hahn G, Hambach U, Krumsiek K, Thein J, Wurster P. 1996. The Cretaceous-Tertiary boundary in the Nanxiong Basin (continental facies, southeast China). In: MacLeod N, Keller G, eds. Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes. New York: Norton. 349–371. Google Scholar

[71] Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. New York: Oxford. 312. Google Scholar

[72] Thibault N, Gardin S. The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 291: 239-252 CrossRef ADS Google Scholar

[73] Thibault N, Galbrun B, Gardin S, Minoletti F, Le Callonnec L. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): Orbital calibration of paleoenvironmental events before the mass extinction. Int J Earth Sci-Geol Rundsch, 2015, 105: 771-795 CrossRef ADS Google Scholar

[74] Thompson R, Oldfield F. 1986. Environmental Magnetism. London: Allen and Unwin. 227. Google Scholar

[75] Wan X, Zhao J, Scott R W, Wang P, Feng Z, Huang Q, Xi D. Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 31-43 CrossRef ADS Google Scholar

[76] Wang C, Feng Z, Zhang L, Huang Y, Cao K, Wang P, Zhao B. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 17-30 CrossRef ADS Google Scholar

[77] Wang C. Environmental/climate change in the Cretaceous greenhouse world: Records from Terrestrial scientific drilling of Songliao Basin and adjacent areas of China. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 1-5 CrossRef ADS Google Scholar

[78] Westerhold T, Röhl U, Donner B, McCarren H K, Zachos J C. A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography, 2011, 26: PA2216 CrossRef ADS Google Scholar

[79] Wilf P, Johnson K R, Huber B T. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA, 2003, 100: 599-604 CrossRef PubMed ADS Google Scholar

[80] Witt M L I, Mather T A, Pyle D M, Aiuppa A, Bagnato E, Tsanev V I. Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J Geophys Res, 2008, 113: B06203 CrossRef ADS Google Scholar

[81] Woelders L, Vellekoop J, Kroon D, Smit J, Casadío S, Prámparo M B, Dinarès-Turell J, Peterse F, Sluijs A, Lenaerts J T M, Speijer R P. Latest Cretaceous climatic and environmental change in the South Atlantic region. Paleoceanography, 2017, 32: 466-483 CrossRef ADS Google Scholar

[82] Woelders L, Vellekoop J, Weltje G J, de Nooijer L, Reichart G J, Peterse F, Claeys P, Speijer R P. Robust multi-proxy data integration, using late Cretaceous paleotemperature records as a case study. Earth Planet Sci Lett, 2018, 500: 215-224 CrossRef ADS Google Scholar

[83] Wu H, Zhang S, Jiang G, Huang Q. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth Planet Sci Lett, 2009, 278: 308-323 CrossRef ADS Google Scholar

[84] Yan Y, Xia B, Lin G, Cui X, Hu X, Yan P, Zhang F. Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sediment Geol, 2007, 197: 127-140 CrossRef ADS Google Scholar

[85] Zambardi T, Sonke J E, Toutain J P, Sortino F, Shinohara H. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet Sci Lett, 2009, 277: 236-243 CrossRef ADS Google Scholar

[86] Zhao Z, Mao X, Chai Z, Yang G, Kong P, Ebihara M, Zhao Z. A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: Evidence from dinosaur eggshells. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 178: 1-17 CrossRef Google Scholar

  • 图 1

    南雄盆地示意图

    (a) 南雄盆地位置; (b) 南雄盆地地层(从大凤组到古城村组, 修改自Li等, 2010); (c) 大塘剖面采样路线; (d) 大塘剖面白垩系-古近系地层实测剖面(修改自张显球等, 2006), 1~4代表已有的4条界线

  • 图 2

    大塘剖面TOC及总Hg含量

    (a) 大塘剖面岩性地层; (b) TOC曲线; (c) 总Hg含量曲线, 紫色的虚线分别表示界线1、2、3 , 紫色条表示界线4 ; (d) 经Clyde等 (2010)的古地磁年代校正的Hg含量曲线; (e) Schoene等 (2019)发表的德干高原火山喷发U-Pb年代, 灰色实线表示K-Pg界线; (f) Sprain等 (2019)发表的德干高原火山喷发40Ar-39Ar年代(红色线条越粗代表喷发量越多)

  • 图 3

    大塘剖面浈水组上段到上湖组坪岭段古气候演化

    (a) χ曲线; (b)、(c) δ18Ocarbδ13Ccarb曲线(数据来自Clyde等, 2010; 王尹, 2012); (d) 太平洋Ocean Drilling Program 1209站点δ18Obenthic曲线(Westerhold等, 2011); (e) 突尼斯Elles剖面δ18O曲线(Thibault等, 2015); 其中, 紫色的虚线分别表示界线1、2、3, 紫色条表示界线4, 灰色条表示LMWE、 Dan-C2事件. 年代采用Clyde等 (2010)的古地磁结果

  • 图 4

    总Hg含量与主要氧化物之间的关系

  • 图 5

    大塘剖面沉积物化学组成A-CN-K

  • 图 6

    χ与SIRM(a)、χ与CIA(b)的散点图

  • 表 1   大塘剖面各组的岩性特征及沉积物粗细情况a)

    组段

    厚度(m)

    岩性特征

    沉积物

    上湖组

    下惠段

    199

    暗紫、深褐色富含钙质结核的泥质粉砂岩和粉砂质泥岩, 夹薄层透镜状含砂砾岩、粗-中粒砂岩, 局部夹绿色薄层状泥岩或页岩

    细碎屑岩

    坪岭段

    88.3

    浈水组

    上段

    164.8

    以粗碎屑岩发育, 灰紫色砂砾、含砾粗砂岩、中粗粒砂砾岩与红褐、棕红色砂岩、粉砂质泥岩互层

    粗碎屑岩

    下段

    130.1

    主田组

    上部

    104.6

    厚层紫红、褐红色泥质粉砂岩, 间夹薄层状、条带状细砂岩, 砂岩局部含少量砾石

    细碎屑岩

    改自张显球等 (2006, 2013)

qqqq

Contact and support