logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 10 : 1753-1772(2021) https://doi.org/10.1360/SSTe-2020-0261

古亚洲洋碳酸盐俯冲再循环及其对华北克拉通岩石圈组成的影响

More info
  • ReceivedOct 3, 2020
  • AcceptedMar 31, 2021
  • PublishedJun 23, 2021

Abstract


Funded by

国家重点研发计划项目(2019YFA0708400)

国家自然科学基金项目(41530211)

地质过程与矿产资源国家重点实验室科技部专项经费(MSFGPMR01)


Acknowledgment

感谢郭京梁博士在锆石U-Pb定年中的帮助, 感谢三位匿名审稿人提出的修改和完善意见.


References

[1] 陈斌, 赵国春, Wilde S. 2001. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义. 地质论评, 47: 361–367. Google Scholar

[2] 葛文春, 吴福元, 周长勇, 张吉衡. 2005. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义. 岩石学报, 21: 749–762. Google Scholar

[3] 郭敬辉, 石昕, 卞爱国, 许荣华, 翟明国, 李永刚. 1999. 桑干地区早元古代花岗岩长石Pb同位素组成和锆石U-Pb年龄: 变质与地壳熔融作用及构造-热事件演化. 岩石学报, 15: 199–207. Google Scholar

[4] 刘勇胜, 陈春飞, 何德涛, 陈唯. 2019. 板块俯冲过程中的地球深部碳循环作用. 中国科学: 地球科学, 49: 1982–2003. Google Scholar

[5] 刘勇胜, 高山, 柳小明, 陈小明, 张文兰, 王选策. 2003. 汉诺坝下地壳-上地幔包体的岩石圈热动力学记录. 科学通报, 48: 1575–1581. Google Scholar

[6] 吕林素, 毛景文, 刘珺, 张作衡, 谢桂青. 2007. 华北克拉通北缘岩浆 Ni-Cu-(PGE)硫化物矿床地质特征、形成时代及其地球动力学背景. 地球学报, 28: 148–166. Google Scholar

[7] 石玉若, 刘敦一, 张旗, 简平, 张福勤, 苗来成, 施光海, 张履桥, 陶华. 2004. 内蒙古苏左旗地区闪长-花岗岩类 SHRIMP年代学. 地质学报, 78: 789–799. Google Scholar

[8] 王瑞雪, 刘勇胜, 宗克清, 胡兆初. 2017. 内蒙古集宁橄榄岩包体微区微量元素与Sr同位素特征及其岩石圈地幔演化的指示意义. 地球科学, 42: 511–526. Google Scholar

[9] 王涛, 郑亚东, Gehrels G E, 穆治国. 2001. 南蒙微大陆存在的年代学证据: 亚干-翁奇海尔罕核杂岩花岗质片麻岩的锆石U-Pb年龄. 科学通报, 46: 1220–1223. Google Scholar

[10] 徐义刚, 李洪颜, 庞崇进, 何斌. 2009. 论华北克拉通破坏的时限. 科学通报, 54: 1974–1989. Google Scholar

[11] 阎国翰, 牟保磊, 曾贻善, 蔡剑辉, 任康绪, 李凤棠. 2007. 华北克拉通火成碳酸岩时空分布和锶钕同位素特征及其地质意义. 高校地质学报, 13: 463–473. Google Scholar

[12] 周长勇, 吴福元, 葛文春, 孙德有, Abdel Rahman A A, 张吉衡, 程瑞玉. 2005. 大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因. 岩石学报, 21: 763–775. Google Scholar

[13] 朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学: 地球科学, 41: 583–592. Google Scholar

[14] Amato J M, Toro J, Miller E L, Gehrels G E, Farmer G L, Gottlieb E S, Till A B. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions. Geol Soc Am Bull, 2009, 121: 1219-1235 CrossRef ADS Google Scholar

[15] Barker D S. Calculated silica activities in carbonatite liquids. Contrib Mineral Petrol, 2001, 141: 704-709 CrossRef ADS Google Scholar

[16] Becker H, Altherr R. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature, 1992, 358: 745-748 CrossRef ADS Google Scholar

[17] Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 2011, 4: 641-646 CrossRef ADS Google Scholar

[18] Belousova E A, Griffin W L, O’Reilly S, Fisher N I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602-622 CrossRef ADS Google Scholar

[19] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148: 243-258 CrossRef Google Scholar

[20] Brounce M, Cottrell E, Kelley K A. The redox budget of the Mariana subduction zone. Earth Planet Sci Lett, 2019, 528: 115859 CrossRef ADS Google Scholar

[21] Bulanova G, Walter M, Smith C, Kohn S, Armstrong L, Blundy J, Gobbo L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 2010, 160: 489-510 CrossRef ADS Google Scholar

[22] Castillo P R. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos, 2015, 216-217: 254-263 CrossRef ADS Google Scholar

[23] Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. J Asian Earth Sci, 2009, 34: 245-257 CrossRef ADS Google Scholar

[24] Chen C F, Liu Y S, Feng L, Foley S F, Zhou L, Ducea M N, Hu Z C. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta, 2018, 238: 55-67 CrossRef ADS Google Scholar

[25] Chen C F, Liu Y S, Foley S F, Ducea M N, Geng X L, Zhang W, Xu R, Hu Z C, Zhou L, Wang Z C. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem Geol, 2017, 466: 641-653 CrossRef ADS Google Scholar

[26] Chen C F, Liu Y S, Foley S F, Ducea M N, He D T, Hu Z C, Chen W, Zong K Q. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology, 2016, 44: 1039-1042 CrossRef ADS Google Scholar

[27] Cheng Z, Zhang Z, Hou T, Santosh M, Chen L, Ke S, Xu L. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta, 2017, 202: 159-178 CrossRef ADS Google Scholar

[28] Cheng Z, Zhang Z, Xie Q, Hou T, Ke S. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett, 2018, 489: 100-110 CrossRef ADS Google Scholar

[29] Cherniak D J, Watson E B. Pb diffusion in zircon. Chem Geol, 2001, 172: 5-24 CrossRef Google Scholar

[30] Choi S H, Mukasa S B, Zhou X H, Xian X H, Andronikov A V. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chem Geol, 2008, 248: 40-61 CrossRef ADS Google Scholar

[31] Clift P D. A revised budget for Cenozoic sedimentary carbon subduction. Rev Geophys, 2017, 55: 97-125 CrossRef ADS Google Scholar

[32] Cope T, Ritts B D, Darby B J, Fildani A, Graham S A. Late Paleozoic sedimentation on the northern margin of the North China block: Implications for regional tectonics and climate change. Int Geol Rev, 2005, 47: 270-296 CrossRef ADS Google Scholar

[33] Demoux A, Kröner A, Liu D, Badarch G. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating. Int J Earth Sci-Geol Rundsch, 2009, 98: 1365-1380 CrossRef ADS Google Scholar

[34] Dobretsov N L, Buslov M M, Vernikovsky V A. Neoproterozoic to early ordovician evolution of the Paleo-Asian Ocean: Implications to the break-up of Rodinia. Gondwana Res, 2003, 6: 143-159 CrossRef Google Scholar

[35] Dutkiewicz A, Müller R D, O’Callaghan S, Jónasson H. Census of seafloor sediments in the world’s ocean. Geology, 2015, 43: 795-798 CrossRef ADS Google Scholar

[36] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem, 2003, 53: 277-303 CrossRef ADS Google Scholar

[37] Foley S F, Pintér Z. 2018. Chapter 1 - Primary Melt Compositions in the Earth’s Mantle. In: Kono Y, Sanloup C, Eds. Magmas under Pressure. Amsterdam: Elsevier. 3–42. Google Scholar

[38] Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 2011, 4: 703-706 CrossRef ADS Google Scholar

[39] Galvez M E, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J. Graphite formation by carbonate reduction during subduction. Nat Geosci, 2013, 6: 473-477 CrossRef ADS Google Scholar

[40] Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts. Am Miner, 2017, 102: 860-866 CrossRef ADS Google Scholar

[41] Grant M L, Wilde S A, Wu F, Yang J. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem Geol, 2009, 261: 155-171 CrossRef ADS Google Scholar

[42] Grassi D, Schmidt M W. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 2011, 52: 765-789 CrossRef ADS Google Scholar

[43] Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 2000, 64: 133-147 CrossRef Google Scholar

[44] Griffin W L, Zhang A, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, Lee T Y, Eds. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series. Washington D C:American Geophysical Union. 107–126. Google Scholar

[45] Han G, Liu Y, Neubauer F, Genser J, Zhao Y, Wen Q, Li W, Wu L, Jiang X, Zhao L. Provenance analysis of Permian sandstones in the central and southern Da Xing’an Mountains, China: Constraints on the evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 2012a, 580: 100-113 CrossRef ADS Google Scholar

[46] Han G, Liu Y, Neubauer F, Jin W, Genser J, Ren S, Li W, Wen Q, Zhao Y, Liang C. LA-ICP-MS U-Pb dating and Hf isotopic compositions of detrital zircons from the Permian sandstones in Da Xing’an Mountains, NE China: New evidence for the eastern extension of the Erenhot-Hegenshan suture zone. J Asian Earth Sci, 2012b, 49: 249-271 CrossRef ADS Google Scholar

[47] He D T, Liu Y S, Moynier F, Foley S F, Chen C F. Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate. Earth Planet Sci Lett, 2020a, 541: 116262 CrossRef ADS Google Scholar

[48] He D T, Liu Y S, Chen C F, Foley S F, Ducea M N. Oxidization of the mantle caused by sediment recycling may contribute to the formation of iron-rich mantle melts. Sci Bull, 2020b, 65: 519-521 CrossRef ADS Google Scholar

[49] He D T, Liu Y S, Gao C G, Chen C F, Hu Z C, Gao S. SiC-dominated ultra-reduced mineral assemblage in carbonatitic xenoliths from the Dalihu basalt, Inner Mongolia, China. Am Miner, 2017, 102: 312-320 CrossRef ADS Google Scholar

[50] He Z, Zhang Z, Zong K, Xiang H, Klemd R. Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction. Lithos, 2014, 196-197: 1-13 CrossRef ADS Google Scholar

[51] Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, Eds. Zircon. Rev Mineral Geochem. 27–62. Google Scholar

[52] Hou T, Zhang Z, Keiding J K, Veksler I V. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. J Petrol, 2015, 56: 893-918 CrossRef ADS Google Scholar

[53] Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom, 2012, 27: 1391-1399 CrossRef Google Scholar

[54] Jahn B, Wu F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ Sci Trans R Soc Edinburgh, 2000, 91: 181-193 CrossRef Google Scholar

[55] Jiang N, Carlson R W, Guo J. Source of Mesozoic intermediate-felsic igneous rocks in the North China Craton: Granulite xenolith evidence. Lithos, 2011, 125: 335-346 CrossRef ADS Google Scholar

[56] Jugo P J, Wilke M, Botcharnikov R E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochim Cosmochim Acta, 2010, 74: 5926-5938 CrossRef ADS Google Scholar

[57] Kelemen P B, Manning C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA, 2015, 112: E3997-E4006 CrossRef ADS Google Scholar

[58] Kirscher U. 2014. Paleozoic Paleogeography of the South Western Part of the Central Asian Orogenic Belt: Paleomagnetic Constraints. Universitätsbibliothek der Ludwig-Maximilians-Universität. Google Scholar

[59] Kononova V A, Kurat G, Embey-Isztin A, Pervov V A, Koeberl C, Brandstätter F. Geochemistry of metasomatised spinel peridotite xenoliths from the Dariganga Plateau, South-eastern Mongolia. Mineral Petrol, 2002, 75: 1-21 CrossRef ADS Google Scholar

[60] Lee C T A, Lackey J S. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements, 2015, 11: 125-130 CrossRef Google Scholar

[61] Li J L, Klemd R, Gao J, Meyer M. Coexisting carbonate-bearing eclogite and blueschist in SW Tianshan, China: Petrology and phase equilibria. J Asian Earth Sci, 2012, 60: 174-187 CrossRef ADS Google Scholar

[62] Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 2017, 4: 111-120 CrossRef Google Scholar

[63] Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 2009, 10: Q04010 CrossRef ADS Google Scholar

[64] Li Y, Brouwer F M, Xiao W, Zheng J. Late Devonian to early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian orogenic belt. Geol Soc Am Bull, 2017, 129: 677-697 CrossRef ADS Google Scholar

[65] Lin J, Liu Y, Yang Y, Hu Z. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci, 2016, 1: 5-27 CrossRef Google Scholar

[66] Liu S, Feng C, Hu R, Lai S, Coulson I M, Feng G, Yang Y. 2014. Geochemical, Sr-Nd isotope, and zircon U-Pb geochronological constraints on the origin of Early Cretaceous carbonatite dykes, northern Shanxi Province, China. Acta Petrol Sin, 30: 350–360. Google Scholar

[67] Liu S, Hu R, Gao S, Feng C, Huang Z, Lai S, Yuan H, Liu X, Coulson I M, Feng G, Wang T, Qi Y. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China. J Asian Earth Sci, 2009, 36: 168-182 CrossRef ADS Google Scholar

[68] Liu Y S, Gao S, Gao C G, Zong K Q, Hu Z C, Ling W L. Garnet-rich granulite xenoliths from the Hannuoba basalts, North China: Petrogenesis and implications for the Mesozoic crust-mantle interaction. J Earth Sci, 2010a, 21: 669-691 CrossRef Google Scholar

[69] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 2010b, 51: 537-571 CrossRef ADS Google Scholar

[70] Liu Y S, Gao S, Yuan H L, Zhou L, Liu X M, Wang X C, Hu Z C, Wang L S. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: Insights on evolution of lower continental crust. Chem Geol, 2004a, 211: 87-109 CrossRef ADS Google Scholar

[71] Liu Y S, He D, Gao C G, Foley S, Gao S, Hu Z C, Zong K Q, Chen H H. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Sci Rep, 2015, 5: 11547 CrossRef ADS Google Scholar

[72] Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 2010c, 55: 1535-1546 CrossRef ADS Google Scholar

[73] Liu Y S, Wang X H, Wang D B, He D T, Zong K Q, Gao C G, Hu Z C, Gong H J. Triassic high-Mg adakitic andesites from Linxi, Inner Mongolia: Insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction. Chem Geol, 2012, 328: 89-108 CrossRef ADS Google Scholar

[74] Liu Y S, Yuan H L, Gao S, Hu Z C, Wang X C, Liu X M, Lin W L. 2004b. Zircon U-Pb ages of olivine pyroxenite xenolith from Hannuoba: Links between the 97–158 Ma basaltic underplating and granulite-facies metamorphism. Chin Sci Bull, 49: 1055–1062. Google Scholar

[75] Lü Z, Bucher K, Zhang L. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan. J Asian Earth Sci, 2013, 76: 37-47 CrossRef ADS Google Scholar

[76] Mackenzie F T, Morse J W. Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta, 1992, 56: 3281-3295 CrossRef Google Scholar

[77] McDonough W F, Sun S S. The composition of the earth. Chem Geol, 1995, 120: 223-253 CrossRef Google Scholar

[78] McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 2016, 352: 444-447 CrossRef ADS Google Scholar

[79] Meng X H, Ge M. 2002. Research on cyclic sequence, events and formational evolution of the Sino-Korea plate. Earth Sci Front, 9: 125–140. Google Scholar

[80] Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc Lond Special Publ, 1993, 76: 71-81 CrossRef ADS Google Scholar

[81] Miao L, Qiu Y, McNaughton N, Luo Z, Groves D, Zhai Y, Fan W, Zhai M, Guan K. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: Constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol Rev, 2002, 19: 187-204 CrossRef Google Scholar

[82] Montero P, Haissen F, Mouttaqi A, Molina J F, Errami A, Sadki O, Cambeses A, Bea F. Contrasting SHRIMP U-Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield: Implications for the lateral extension of the West African Craton. Gondwana Res, 2016, 38: 238-250 CrossRef ADS Google Scholar

[83] Niu X, Chen B, Feng G, Liu F, Yang J. Origin of lamprophyres from the northern margin of the North China Craton: Implications for mantle metasomatism. J Geol Soc, 2017, 174: 353-364 CrossRef ADS Google Scholar

[84] Niu X, Chen B, Liu A, Suzuki K, Ma X. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton. Lithos, 2012, 149: 146-158 CrossRef ADS Google Scholar

[85] Ogasawara Y, Ohta M, Fukasawa K, Katayama I, Maruyama S. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Isl Arc, 2000, 9: 400-416 CrossRef Google Scholar

[86] Poli S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci, 2015, 8: 633-636 CrossRef ADS Google Scholar

[87] Rodionov N V, Belyatsky B V, Antonov A V, Kapitonov I N, Sergeev S A. Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-ultramafic complex, Kola Peninsula, Russia. Gondwana Res, 2012, 21: 728-744 CrossRef ADS Google Scholar

[88] Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Res, 2011, 19: 751-763 CrossRef ADS Google Scholar

[89] Rudnick R L, Gao S, Ling W L, Liu Y S, McDonough W F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 2004, 77: 609-637 CrossRef ADS Google Scholar

[90] Schertl H P, Okay A I. A coesite inclusion in dolomite in Dabie Shan, China: Petrological and rheological significance. European J Mineral, 1994, 6: 995-1000 CrossRef ADS Google Scholar

[91] Schertl H P, Sobolev N V. The Kokchetav Massif, Kazakhstan: “Type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci, 2013, 63: 5-38 CrossRef ADS Google Scholar

[92] Schettino E, Poli S. 2020. Hydrous carbonatitic liquids drive CO2 recycling from subducted marls and limestones. In: Manning C E, Lin J F, Mao W L, Eds. Carbon in Earth’s Interior. 209–221. Google Scholar

[93] Şengör A, Natal’in B, Burtman V. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 1993, 364: 299-307 CrossRef ADS Google Scholar

[94] Simakin A G, Salova T P, Bondarenko G V. Experimental study of magmatic melt oxidation by CO2. Petrology, 2012, 20: 593-606 CrossRef Google Scholar

[95] Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 2008, 249: 1-35 CrossRef ADS Google Scholar

[96] Tang J, Zheng Y F, Wu Y B, Gong B. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: Implication for tectonic affinity. Precambrian Res, 2006, 144: 1-18 CrossRef ADS Google Scholar

[97] Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 2008, 101: 435-452 CrossRef ADS Google Scholar

[98] Tsuno K, Dasgupta R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 subduction. Earth Planet Sci Lett, 2012, 319-320: 185-196 CrossRef ADS Google Scholar

[99] Veizer J, Mackenzie F T. 2003. 7.15 - Evolution of Sedimentary Rocks. In: Holland H D, Turekian K K, Eds. Treatise on Geochemistry. Pergamon, Oxford. 369–407. Google Scholar

[100] Vermeesch P. On the visualisation of detrital age distributions. Chem Geol, 2012, 312-313: 190-194 CrossRef ADS Google Scholar

[101] Volkova N I, Budanov V I. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: Seamount volcanism and accretionary tectonics. Lithos, 1999, 47: 201-216 CrossRef Google Scholar

[102] Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 2011, 334: 54-57 CrossRef ADS Google Scholar

[103] Wang C, Lai Y J, Foley S F, Liu Y, Belousova E, Zong K, Hu Z. Rutile records for the cooling history of the Trans-North China orogen from assembly to break-up of the Columbia supercontinent. Precambrian Res, 2020, 346: 105763 CrossRef ADS Google Scholar

[104] Wang C Y, Liu Y S, Foley S F, Zong K Q, Hu Z C. Lithospheric transformation of the northern North China Craton by changing subduction style of the Paleo-Asian oceanic plate: Constraints from peridotite and pyroxenite xenoliths in the Yangyuan basalts. Lithos, 2019, 328-329: 58-68 CrossRef ADS Google Scholar

[105] Wang C Y, Liu Y S, Min N, Zong K Q, Hu Z C, Gao S. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos, 2016, 261: 109-127 CrossRef ADS Google Scholar

[106] Wang T, Tong Y, Zhang L, Li S, Huang H, Zhang J, Guo L, Yang Q, Hong D, Donskaya T, Gladkochub D, Tserendash N. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance. J Asian Earth Sci, 2017, 145: 368-392 CrossRef ADS Google Scholar

[107] Wei Y, Zheng J, Su Y, Ma Q, Griffin W L. Lithological and age structure of the lower crust beneath the northern edge of the North China Craton: Xenolith evidence. Lithos, 2015, 216-217: 211-223 CrossRef ADS Google Scholar

[108] Wiechert U, Ionov D A, Wedepohl K H. Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: A record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol, 1997, 126: 345-364 CrossRef ADS Google Scholar

[109] Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Geoanal Res, 1995, 19: 1-23 CrossRef Google Scholar

[110] Wilde S A, Zhou X H, Nemchin A A, Sun M. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31: 817-820 CrossRef ADS Google Scholar

[111] Windley B F, Alexeiev D, Xiao W, Kröner A, Badarch G. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc, 2007, 164: 31-47 CrossRef ADS Google Scholar

[112] Windley B F, Maruyama S, Xiao W J. Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 2010, 310: 1250-1293 CrossRef ADS Google Scholar

[113] Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 2005, 231: 53-72 CrossRef ADS Google Scholar

[114] Wu D, Liu Y S, Chen C F, Xu R, Ducea M N, Hu Z C, Zong K Q. In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton. Lithos, 2017, 288: 338-351 CrossRef ADS Google Scholar

[115] Wu F Y, Jahn B M, Wilde S, Sun D Y. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 2000, 328: 89-113 CrossRef Google Scholar

[116] Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103-119 CrossRef ADS Google Scholar

[117] Xiao W, Windley B F, Hao J, Zhai M G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 2003, 22: 1069 CrossRef ADS Google Scholar

[118] Xu B, Charvet J, Chen Y, Zhao P, Shi G. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res, 2013, 23: 1342-1364 CrossRef ADS Google Scholar

[119] Xu B, Zhao P, Wang Y, Liao W, Luo Z, Bao Q, Zhou Y. The pre-Devonian tectonic framework of Xing’an—Mongolia orogenic belt (XMOB) in north China. J Asian Earth Sci, 2015, 97: 183-196 CrossRef ADS Google Scholar

[120] Xu C, Chakhmouradian A R, Kynický J, Li Y, Song W, Chen W. A Paleoproterozoic mantle source modified by subducted sediments under the North China Craton. Geochim Cosmochim Acta, 2019, 245: 222-239 CrossRef ADS Google Scholar

[121] Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 2018, 9: 2790 CrossRef ADS Google Scholar

[122] Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv, 2017, 3: e1601589 CrossRef ADS Google Scholar

[123] Xu R, Liu Y, Wang X, Zong K, Hu Z, Chen H, Zhou L. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 2017, 274-275: 383-396 CrossRef ADS Google Scholar

[124] Xu S, Nagao K, Uto K, Wakita H, Nakai S I, Liu C. He, Sr and Nd isotopes of mantle-derived xenoliths in volcanic rocks of NE China. J Asian Earth Sci, 1998, 16: 547-556 CrossRef Google Scholar

[125] Xu Y G, Menzies M A, Thirlwall M F, Huang X L, Liu Y, Chen X M. “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning?. Geochim Cosmochim Acta, 2003, 67: 487-505 CrossRef Google Scholar

[126] Xu Y. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: Pyroxenite xenoliths from Hannuoba, North China. Chem Geol, 2002, 182: 301-322 CrossRef Google Scholar

[127] Xue S, Ling M X, Liu Y L, Sun W. Recycling of subducted carbonates: Formation of the Taohuala Mountain carbonatite, North China Craton. Chem Geol, 2018, 478: 89-101 CrossRef ADS Google Scholar

[128] Yang J H, Sun J F, Zhang M, Wu F Y, Wilde S A. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem Geol, 2012, 328: 149-167 CrossRef ADS Google Scholar

[129] Yang J H, Wu F Y, Shao J A, Wilde S A, Xie L W, Liu X M. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 2006, 246: 336-352 CrossRef ADS Google Scholar

[130] Yang J H, Wu F Y, Wilde S A, Liu X M. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem Geol, 2007, 242: 155-175 CrossRef ADS Google Scholar

[131] Yang J H, Zhang M, Wu F Y. Mesozoic decratonization of the North China Craton by lithospheric delamination: Evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China. J Asian Earth Sci, 2018, 160: 396-407 CrossRef ADS Google Scholar

[132] Yang J, Gao S, Chen C, Tang Y, Yuan H, Gong H, Xie S, Wang J. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim Cosmochim Acta, 2009, 73: 2660-2673 CrossRef ADS Google Scholar

[133] Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M, Diwu C R. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol, 2008, 247: 100-118 CrossRef ADS Google Scholar

[134] Zhang H F, Sun Y L, Tang Y J, Xiao Y, Zhang W H, Zhao X M, Santosh M, Menzies M A. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton: Petrology, geochemistry and Sr, Nd and Re isotopes. Lithos, 2012, 149: 100-114 CrossRef ADS Google Scholar

[135] Zhang H T, Liu Y S, Hu Z C, Zong K Q, Chen H H, Chen C F. Low-δ13C carbonates in the Miocene basalt of the northern margin of the North China Craton: Implications for deep carbon recycling. J Asian Earth Sci, 2017, 144: 110-125 CrossRef ADS Google Scholar

[136] Zhang L, Liu Y, Wang L, Wang C, Zhang G. Multiple metasomatism of the lithospheric mantle beneath the northeastern North China Craton. Lithos, 2020, 374-375: 105719 CrossRef ADS Google Scholar

[137] Zhang S H, Zhao Y, Kröner A, Liu X M, Xie L W, Chen F K. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int J Earth Sci-Geol Rundsch, 2009a, 98: 1441-1467 CrossRef ADS Google Scholar

[138] Zhang S-H, Zhao Y, Song B, Hu J-M, Liu S-W, Yang Y-H, Chen F-K, Liu X-M, Liu J. 2009b. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol Soc Am Bull, 121: 181–200. Google Scholar

[139] Zhang S H, Zhao Y, Song B, Yang Y H. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from western Beijing: Evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block. Gondwana Res, 2007a, 12: 157-165 CrossRef ADS Google Scholar

[140] Zhang S H, Zhao Y, Ye H, Liu J M, Hu Z C. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geol Soc Am Bull, 2014, 126: 1275-1300 CrossRef ADS Google Scholar

[141] Zhang S H, Zhao Y U E, Song B, Yang Z Y, Hu J M, Wu H A I. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Palaeozoic active continental margin. J Geol Soc, 2007b, 164: 451-463 CrossRef ADS Google Scholar

[142] Zhang S, Zhao Y, Ye H, Hou K, Li C. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 2012, 155: 1-18 CrossRef ADS Google Scholar

[143] Zhao G, Wilde S A, Cawood P A, Sun M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 2001, 107: 45-73 CrossRef Google Scholar

[144] Zhao G, Wilde S A, Sun M, Li S, Li X, Zhang J. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Res, 2008, 160: 213-226 CrossRef ADS Google Scholar

[145] Zhao P, Chen Y, Xu B, Faure M, Shi G Z, Choulet F. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China. J Geophys Res Solid Earth, 2013, 118: 1873-1894 CrossRef ADS Google Scholar

[146] Zheng J, Griffin W L, O’Reilly S Y, Lu F, Yu C, Zhang M, Li H. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: Evolution of the lower crust beneath the North China Craton. Contrib Mineral Petrol, 2004, 148: 79-103 CrossRef ADS Google Scholar

[147] Zheng J P, Griffin W L, Qi L, O’Reilly S Y, Sun M, Zheng S, Pearson N, Gao J F, Yu C M, Su Y P, Tang H Y, Liu Q S, Wu X L. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chem Geol, 2009, 264: 266-280 CrossRef ADS Google Scholar

[148] Zhou R, Liu D, Zhou A, Zou Y, Xie J. A synthesis of late Paleozoic and early Mesozoic sedimentary provenances and constraints on the tectonic evolution of the northern North China Craton. J Asian Earth Sci, 2019, 185: 104029 CrossRef ADS Google Scholar

[149] Zhu B Q. 1998. Theory and Applications of Isotope Systematics in Geosciences: Evolution of Continental Crust and Mantle in China (in Chinese). Beijing: Science Press. Google Scholar

[150] Zong K Q, Zhang Z M, He Z Y, Hu Z C, Santosh M, Liu Y S, Wang W. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: Constraints on continental collision in the southern Central Asian Orogenic Belt. J Metamorph Geol, 2012, 30: 753-768 CrossRef ADS Google Scholar

[151] Zou D, Zhang H, Hu Z, Santosh M. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts: Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton. Lithos, 2016, 264: 210-223 CrossRef ADS Google Scholar

  • 图 1

    (网络版彩图)兴蒙造山带和华北克拉通北缘构造简图

    修改自Zhang等(2014). 汉诺坝位于华北克拉通北缘距离兴蒙造山带约200km处

  • 图 2

    锆石CL图像及年龄

    圆圈为分析点, 数据为年龄值(单位: Ma)

  • 图 3

    锆石年龄分布

    (a) 汉诺坝碳酸岩中锆石U-Pb年龄分布; (b) 兴蒙造山带沉积物中碎屑锆石年龄(Rojas-Agramonte等, 2011; Han等, 2012a, 2012b; Xu等, 2013)与火成岩中岩浆锆石年龄分布(陈斌等, 2001; 王涛等, 2001; 石玉若等, 2004; 葛文春等, 2005; Chen等, 2009; Demoux等, 2009; Liu等, 2012); (c) 华北克拉通北部晚古生代-中生代沉积物(Cope等, 2005; Zhou等, 2019)、现代河流沉积物(Yang等, 2009)、火成岩(郭敬辉等, 1999; Miao等, 2002; Wu等, 2005; Zhang等, 2007a, 2007b; Zhao等, 2008; Grant等, 2009; Zhang等, 2009a, 2009b)以及汉诺坝地区下地壳麻粒岩包体中的锆石年龄分布(Wilde等, 2003; Liu等, 2004a; Liu等, 2009; Zheng等, 2009; Liu等, 2010a; Jiang等, 2011; Wei等, 2015). 文献数据仅选择谐和度大于90%的数据. 概率密度计算方法据Vermeesch(2012)

  • 图 4

    (网络版彩图)汉诺坝碳酸岩中锆石εHf(t)值与U-Pb年龄的变化关系

    球粒陨石储库(CHUR)数据来自Blichert-Toft和Albarède(1997), 亏损地幔和大陆地壳Hf同位素组成来自Griffin等(2000). 兴蒙造山带(XMOB)火成岩和沉积物中锆石(周长勇等, 2005; Chen等, 2009; Liu等, 2012; Li Y等, 2017)以及华北克拉通北部(NCC)火成岩(Zheng等, 2004; Yang等, 2007; Zhang等, 2009b)和古生代-中生代地层中的锆石(Yang等, 2006)放在图(b)中作对比

  • 图 5

    汉诺坝碳酸岩中锆石的球粒陨石标准化稀土元素模式图

    年龄后面括号中数值为Th/U比值. 球粒陨石值(CI)来自McDonough和Sun(1995)

  • 图 6

    华北克拉通北缘新生代玄武岩捕获的地幔橄榄岩包体中单斜辉石Ti/Eu-(La/Yb)N和Ti/Eu-87Sr/86Sr变化图

    数据来源如下: 四子王旗(Wu等, 2017)、阳原(Yang等, 2018; Wang等, 2019)、繁峙(Tang等, 2008; Chen等, 2017)、大同(Wang等, 2016)、集宁(Zhang H F等, 2012; 王瑞雪等, 2017)、围场(Zou等, 2016)、汉诺坝(Xu等, 1998; Rudnick等, 2004; Choi等, 2008)、辉南(Zhang等, 2020)和我们未发表的伊通橄榄岩包体数据. DLH为达里湖玄武岩中碳酸岩包体平均值(Liu等, 2015). (b)中碳酸盐岩为全球四个地区的古生代碳酸盐样品平均值(n=117, 误差为1SD), 碳酸岩为全球火成碳酸岩样品平均值(n=271, 误差为1SD). 亏损地幔中单斜辉石(DM Cpx)据Workman和Hart(2005)

  • 表 1   汉诺坝碳酸岩中锆石U-Pb年龄及Th、U含量

    分析点号

    分析方法

    含量(ppm)

    Th/U

    同位素比值

    年龄(Ma)

    Th

    U

    207Pb/206Pb

    1σ

    207Pb/235U

    1σ

    206Pb/238U

    1σ

    207Pb/206Pb

    1σ

    207Pb/235U

    1σ

    206Pb/238U

    1σ

    JSB1502-01

    LA-MC-ICP-MS

    21

    27

    0.78

    0.0563

    0.0015

    0.3508

    0.0094

    0.0452

    0.0003

    465

    57

    305

    7

    285

    2

    JSB1502-02

    LA-MC-ICP-MS

    1969

    6858

    0.29

    0.0603

    0.0010

    0.0755

    0.0012

    0.0091

    0.00002

    613

    35

    74

    1

    58

    0

    JSB1502-03

    LA-MC-ICP-MS

    988

    6122

    0.16

    0.0527

    0.0001

    0.3327

    0.0016

    0.0458

    0.0002

    322

    6

    292

    1

    289

    1

    JSB1502-07

    LA-MC-ICP-MS

    76

    201

    0.38

    0.1146

    0.0006

    5.5045

    0.0421

    0.3482

    0.0019

    1873

    11

    1901

    7

    1926

    9

    JSB1502-08

    LA-MC-ICP-MS

    139

    366

    0.38

    0.0558

    0.0015

    0.3013

    0.0105

    0.0387

    0.0002

    456

    1148

    267

    8

    245

    1

    JSB1502-10

    LA-MC-ICP-MS

    87

    225

    0.38

    0.1263

    0.0018

    6.8418

    0.1479

    0.3897

    0.0040

    2048

    24

    2091

    19

    2121

    19

    JSB1502-11

    LA-MC-ICP-MS

    94

    85

    1.10

    0.1210

    0.0004

    5.9595

    0.0447

    0.3569

    0.0019

    1972

    6

    1970

    7

    1968

    9

    JSB1502-21

    LA-MC-ICP-MS

    176

    398

    0.44

    0.0520

    0.0004

    0.2489

    0.0021

    0.0349

    0.0002

    283

    10

    226

    2

    221

    1

    JSB1502-22

    LA-MC-ICP-MS

    43

    72

    0.59

    0.1025

    0.0006

    4.3405

    0.0551

    0.3088

    0.0035

    1669

    9

    1701

    11

    1735

    17

    JSB1502-23

    LA-MC-ICP-MS

    73

    78

    0.94

    0.0554

    0.0007

    0.4541

    0.0069

    0.0596

    0.0005

    432

    39

    380

    5

    373

    3

    JSB1502-24

    LA-MC-ICP-MS

    37

    120

    0.31

    0.0885

    0.0006

    2.8911

    0.0249

    0.2382

    0.0016

    1392

    23

    1380

    7

    1377

    8

    JSB1502-29

    LA-MC-ICP-MS

    288

    3097

    0.09

    0.0554

    0.0008

    0.2892

    0.0065

    0.0379

    0.0008

    428

    29

    258

    5

    240

    5

    JSB1502-30

    LA-MC-ICP-MS

    355

    465

    0.77

    0.0525

    0.0003

    0.3052

    0.0017

    0.0421

    0.0001

    309

    12

    270

    1

    266

    1

    JSB1502-31

    LA-MC-ICP-MS

    279

    500

    0.56

    0.0564

    0.0003

    0.4889

    0.0037

    0.0628

    0.0003

    478

    11

    404

    3

    393

    2

    JSB1502-32

    LA-MC-ICP-MS

    20

    57

    0.36

    0.0723

    0.0005

    1.5058

    0.0121

    0.1512

    0.0006

    994

    14

    933

    5

    908

    4

    JSB1502-33

    LA-MC-ICP-MS

    223

    169

    1.32

    0.1319

    0.0004

    6.3766

    0.0252

    0.3507

    0.0010

    2124

    6

    2029

    4

    1938

    5

    JSB1502-34

    LA-MC-ICP-MS

    53

    74

    0.72

    0.1312

    0.0005

    6.7017

    0.0449

    0.3704

    0.0021

    2115

    8

    2073

    6

    2031

    10

    JSB1502-36

    LA-MC-ICP-MS

    173

    670

    0.26

    0.0767

    0.0008

    1.9274

    0.0185

    0.1805

    0.0014

    1122

    8

    1091

    6

    1070

    8

    JSB1502-37

    LA-MC-ICP-MS

    160

    378

    0.42

    0.1340

    0.0005

    6.9076

    0.0444

    0.3740

    0.0022

    2151

    6

    2100

    6

    2048

    10

    JSB1502-38

    LA-MC-ICP-MS

    40

    582

    0.07

    0.1528

    0.0003

    10.2255

    0.0612

    0.4855

    0.0029

    2377

    8

    2455

    6

    2551

    13

    JSB1502-39

    LA-MC-ICP-MS

    447

    584

    0.76

    0.0526

    0.0004

    0.3019

    0.0027

    0.0416

    0.0002

    309

    12

    268

    2

    263

    2

    JSB1502-40

    LA-MC-ICP-MS

    172

    502

    0.34

    0.0535

    0.0003

    0.2947

    0.0026

    0.0399

    0.0002

    350

    11

    262

    2

    252

    1

    JSB1502-42

    LA-MC-ICP-MS

    15

    265

    0.06

    0.1163

    0.0003

    5.3025

    0.0273

    0.3307

    0.0013

    1900

    5

    1869

    5

    1842

    6

    JSB1502-44

    LA-MC-ICP-MS

    129

    267

    0.48

    0.1452

    0.0003

    8.1868

    0.0427

    0.4091

    0.0021

    2300

    3

    2252

    5

    2211

    10

    JSB1502-49

    LA-MC-ICP-MS

    74

    105

    0.70

    0.0537

    0.0006

    0.3696

    0.0047

    0.0499

    0.0002

    367

    21

    319

    3

    314

    1

    JSB1502-51

    LA-MC-ICP-MS

    268

    579

    0.46

    0.1649

    0.0004

    10.2201

    0.0505

    0.4494

    0.0019

    2507

    5

    2455

    5

    2393

    8

    JSB1502-52

    LA-MC-ICP-MS

    71

    76

    0.93

    0.1142

    0.0005

    4.9568

    0.0277

    0.3147

    0.0012

    1933

    8

    1812

    5

    1764

    6

    JSB1502-54

    LA-MC-ICP-MS

    359

    354

    1.01

    0.0622

    0.0002

    0.9554

    0.0048

    0.1114

    0.0004

    680

    9

    681

    3

    681

    2

    JSB1502-55

    LA-MC-ICP-MS

    456

    742

    0.62

    0.0529

    0.0003

    0.2768

    0.0016

    0.0379

    0.0001

    324

    11

    248

    1

    240

    1

    JSB1502-56

    LA-MC-ICP-MS

    325

    479

    0.68

    0.0523

    0.0003

    0.2331

    0.0023

    0.0323

    0.0002

    298

    8

    213

    2

    205

    2

    JSB1502-57

    LA-MC-ICP-MS

    200

    430

    0.46

    0.0749

    0.0004

    1.5767

    0.0108

    0.1526

    0.0006

    1066

    14

    961

    4

    916

    3

    JSB1502-59

    LA-MC-ICP-MS

    37

    582

    0.06

    0.1211

    0.0003

    5.8595

    0.0380

    0.3507

    0.0018

    1973

    6

    1955

    6

    1938

    9

    JSB1502-60

    LA-MC-ICP-MS

    274

    2454

    0.11

    0.0545

    0.0002

    0.3208

    0.0014

    0.0427

    0.0001

    391

    40

    282

    1

    269

    1

    JSB1502-64

    LA-MC-ICP-MS

    176

    384

    0.46

    0.0561

    0.0002

    0.5614

    0.0038

    0.0726

    0.0004

    457

    9

    452

    3

    452

    2

    JSB1502-65

    LA-MC-ICP-MS

    314

    483

    0.65

    0.1658

    0.0004

    11.4429

    0.2557

    0.5002

    0.0110

    2517

    4

    2560

    21

    2615

    47

    JSB1502-66

    LA-MC-ICP-MS

    229

    309

    0.74

    0.0521

    0.0003

    0.3425

    0.0023

    0.0477

    0.0001

    300

    15

    299

    2

    300

    1

    JSB1502-67

    LA-MC-ICP-MS

    127

    390

    0.32

    0.1670

    0.0004

    10.8498

    0.0625

    0.4712

    0.0023

    2527

    4

    2510

    6

    2489

    10

    JSB1502-70

    LA-MC-ICP-MS

    44

    117

    0.37

    0.1702

    0.0005

    13.3976

    0.1349

    0.5712

    0.0056

    2561

    5

    2708

    10

    2913

    23

    JSB1502@0

    SIMS

    484

    948

    0.51

    0.0608

    0.0003

    0.8594

    0.0139

    0.1026

    0.0016

    630

    11

    630

    8

    630

    9

    JSB1502@01

    SIMS

    59

    284

    0.21

    0.0609

    0.0006

    0.8520

    0.0153

    0.1015

    0.0016

    635

    20

    626

    8

    623

    9

    JSB1502@02

    SIMS

    1291

    2186

    0.59

    0.0555

    0.0003

    0.4974

    0.0081

    0.0650

    0.0010

    432

    14

    410

    6

    406

    6

    JSB1502@03

    SIMS

    105

    2134

    0.05

    0.0775

    0.0002

    2.1443

    0.0342

    0.2006

    0.0032

    1135

    5

    1163

    11

    1178

    17

    JSB1502@04

    SIMS

    239

    1172

    0.20

    0.0704

    0.5300

    1.1721

    1.6140

    0.1207

    1.5246

    941

    11

    788

    9

    735

    11

    JSB1502@05

    SIMS

    406

    2273

    0.18

    0.0849

    0.0003

    2.5554

    0.0415

    0.2183

    0.0034

    1313

    7

    1288

    12

    1273

    18

    JSB1502@06

    SIMS

    469

    897

    0.52

    0.0559

    0.0004

    0.5480

    0.0096

    0.0711

    0.0011

    450

    16

    444

    6

    442

    7

    JSB1502@07

    SIMS

    263

    587

    0.45

    0.0704

    0.0006

    1.5197

    0.0264

    0.1565

    0.0023

    941

    18

    938

    11

    937

    13

    JSB1502@08

    SIMS

    267

    477

    0.56

    0.0559

    0.0006

    0.5420

    0.0106

    0.0704

    0.0012

    446

    23

    440

    7

    439

    7

    JSB1502@09

    SIMS

    423

    567

    0.75

    0.0484

    0.0011

    0.1054

    0.0029

    0.0158

    0.0002

    118

    52

    102

    3

    101

    2

    JSB1502@10

    SIMS

    1077

    1257

    0.86

    0.0478

    0.0006

    0.1111

    0.0022

    0.0168

    0.0003

    91

    28

    107

    2

    108

    2

    JSB1502@11

    SIMS

    205

    444

    0.46

    0.0549

    0.0008

    0.4109

    0.0088

    0.0543

    0.0008

    406

    34

    349

    6

    341

    5

    JSB1502@12

    SIMS

    522

    335

    1.56

    0.1196

    0.0004

    5.9310

    0.0980

    0.3596

    0.0058

    1951

    6

    1966

    14

    1980

    28

    JSB1502@13

    SIMS

    487

    886

    0.55

    0.0507

    0.0007

    0.2354

    0.0047

    0.0337

    0.0005

    227

    30

    215

    4

    213

    3

    JSB1502@14

    SIMS

    99

    90

    1.10

    0.0662

    0.0011

    1.2034

    0.0287

    0.1318

    0.0022

    813

    36

    802

    13

    798

    12

    JSB1502@17

    SIMS

    45

    111

    0.41

    0.0653

    0.0009

    1.1280

    0.0243

    0.1253

    0.0020

    784

    30

    767

    12

    761

    11

    JSB1502@18

    SIMS

    64

    96

    0.67

    0.1109

    0.0010

    4.8631

    0.0858

    0.3180

    0.0049

    1814

    16

    1796

    15

    1780

    24

    JSB1502@19

    SIMS

    28

    384

    0.07

    0.0570

    0.0010

    0.5661

    0.0152

    0.0720

    0.0014

    492

    39

    455

    10

    448

    9

    JSB1502@20

    SIMS

    205

    207

    0.99

    0.0657

    0.0007

    1.1462

    0.0209

    0.1265

    0.0019

    798

    22

    775

    10

    768

    11

    JSB1502@21

    SIMS

    194

    178

    1.09

    0.0674

    0.0010

    1.2405

    0.0265

    0.1335

    0.0020

    851

    31

    819

    12

    808

    12

    JSB1502@24

    SIMS

    403

    1182

    0.34

    0.0525

    0.0014

    0.2597

    0.0082

    0.0358

    0.0006

    309

    60

    234

    7

    227

    4

    JSB1502@25

    SIMS

    883

    2060

    0.43

    0.0494

    0.0004

    0.1735

    0.0030

    0.0255

    0.0004

    167

    18

    162

    3

    162

    3

    JSB1502@26

    SIMS

    1197

    1974

    0.61

    0.0497

    0.0005

    0.1742

    0.0034

    0.0254

    0.0004

    181

    25

    163

    3

    162

    3

    JSB1502@27

    SIMS

    614

    1147

    0.54

    0.0497

    0.0009

    0.1977

    0.0048

    0.0289

    0.0005

    181

    42

    183

    4

    183

    3

    JSB1502@29

    SIMS

    2492

    1711

    1.46

    0.0524

    0.0003

    0.3371

    0.0055

    0.0467

    0.0007

    303

    14

    295

    4

    294

    4

    JSB1502@32

    SIMS

    228

    328

    0.69

    0.1000

    0.0008

    3.7988

    0.0641

    0.2754

    0.0042

    1625

    14

    1592

    14

    1568

    21

    JSB1502@33

    SIMS

    522

    335

    1.56

    0.1197

    0.0004

    5.9371

    0.0980

    0.3596

    0.0058

    1952

    6

    1967

    14

    1980

    28

  • 表 2   汉诺坝碳酸岩中锆石Hf同位素组成

    分析点号

    176Hf/177Hf

    1σ

    176Lu/177Hf

    1σ

    176Yb/177Hf

    1σ

    176Hf/177Hf(t)

    εHf(t)

    JSB1502-01

    0.282152

    0.000017

    0.000774

    0.000078

    0.02682

    0.00277

    0.28215

    −15.8

    JSB1502-02

    0.282683

    0.000019

    0.001735

    0.000069

    0.04881

    0.00147

    0.28268

    −1.92

    JSB1502-03

    0.282567

    0.000017

    0.001702

    0.000038

    0.05930

    0.00109

    0.28256

    −1.23

    JSB1502-07

    0.281637

    0.000023

    0.001075

    0.000033

    0.03582

    0.00107

    0.28160

    0.31

    JSB1502-08

    0.282482

    0.000017

    0.001142

    0.000019

    0.04104

    0.00059

    0.28248

    −5.07

    JSB1502-10

    0.281534

    0.000020

    0.001421

    0.000088

    0.05036

    0.00251

    0.28148

    0.03

    JSB1502-11

    0.281565

    0.000019

    0.000767

    0.000021

    0.02863

    0.00073

    0.28154

    0.35

    JSB1502-21

    0.282552

    0.000027

    0.001443

    0.000029

    0.04463

    0.00085

    0.28255

    −3.13

    JSB1502-22

    0.281943

    0.000013

    0.000785

    0.000007

    0.02760

    0.00038

    0.28192

    6.99

    JSB1502-23

    0.282930

    0.000014

    0.001340

    0.000017

    0.04336

    0.00078

    0.28292

    13.5

    JSB1502-24

    0.282134

    0.000021

    0.001166

    0.000020

    0.03854

    0.00092

    0.28210

    7.30

    JSB1502-29

    0.282573

    0.000017

    0.001003

    0.000032

    0.03589

    0.00102

    0.28257

    −1.94

    JSB1502-30

    0.282655

    0.000020

    0.001453

    0.000026

    0.04300

    0.00107

    0.28265

    1.47

    JSB1502-31

    0.282292

    0.000020

    0.001131

    0.000023

    0.03686

    0.00054

    0.28228

    −8.62

    JSB1502-32

    0.282304

    0.000018

    0.000377

    0.000006

    0.01184

    0.00014

    0.28230

    3.28

    JSB1502-44

    0.281391

    0.000030

    0.001443

    0.000025

    0.04587

    0.00058

    0.28133

    0.44

    JSB1502-49

    0.282870

    0.000022

    0.001376

    0.000037

    0.04746

    0.00141

    0.28286

    11.2

    JSB1502-51

    0.281296

    0.000017

    0.000642

    0.000009

    0.01942

    0.00035

    0.28127

    3.01

    JSB1502-54

    0.282509

    0.000017

    0.001076

    0.000023

    0.02933

    0.00050

    0.28250

    5.26

    JSB1502-56

    0.282464

    0.000023

    0.000987

    0.000017

    0.02830

    0.00055

    0.28246

    −6.52

    JSB1502-59

    0.281296

    0.000019

    0.000440

    0.000014

    0.01332

    0.00050

    0.28128

    −8.79

    JSB1502-64

    0.282232

    0.000024

    0.002272

    0.000188

    0.06775

    0.00517

    0.28221

    −9.85

    JSB1502-65

    0.281238

    0.000022

    0.001249

    0.000018

    0.04305

    0.00082

    0.28118

    0.12

    JSB1502-66

    0.282810

    0.000016

    0.001479

    0.000012

    0.04757

    0.00037

    0.28280

    7.66

    JSB1502-67

    0.281267

    0.000015

    0.000941

    0.000006

    0.03080

    0.00030

    0.28122

    1.92

    JSB1502-70

    0.281276

    0.000022

    0.001058

    0.000023

    0.03298

    0.00065

    0.28122

    2.79

    JSB1502@0

    0.282509

    0.000014

    0.001004

    0.000019

    0.04082

    0.00055

    0.28250

    4.16

    JSB1502@02

    0.282774

    0.000021

    0.001738

    0.000032

    0.06249

    0.00156

    0.28276

    8.55

    JSB1502@05

    0.281723

    0.000014

    0.001237

    0.000036

    0.04464

    0.00100

    0.28169

    −9.07

    JSB1502@06

    0.282473

    0.000018

    0.001024

    0.000017

    0.03635

    0.00079

    0.28246

    −1.14

    JSB1502@07

    0.282109

    0.000017

    0.001835

    0.000065

    0.05687

    0.00283

    0.28208

    −3.86

    JSB1502@08

    0.282280

    0.000019

    0.000723

    0.000017

    0.02653

    0.00088

    0.28227

    −7.96

    JSB1502@09

    0.282504

    0.000019

    0.000991

    0.000013

    0.03419

    0.00066

    0.28250

    −7.32

    JSB1502@11

    0.282797

    0.000024

    0.002906

    0.000043

    0.10717

    0.00301

    0.28278

    7.75

    JSB1502@12

    0.281495

    0.000018

    0.001399

    0.000030

    0.05288

    0.00099

    0.28144

    −3.46

    JSB1502@13

    0.282633

    0.000016

    0.001249

    0.000018

    0.04131

    0.00081

    0.28263

    −0.42

    JSB1502@14

    0.281907

    0.000034

    0.002962

    0.000149

    0.08443

    0.00400

    0.28186

    −14.6

    JSB1502@17

    0.282472

    0.000020

    0.000807

    0.000005

    0.02912

    0.00037

    0.28246

    5.77

    JSB1502@18

    0.281502

    0.000020

    0.001135

    0.000033

    0.03192

    0.00064

    0.28146

    −5.87

    JSB1502@19

    0.282117

    0.000023

    0.001652

    0.000183

    0.04642

    0.00597

    0.28210

    −13.8

    JSB1502@20

    0.282072

    0.000023

    0.002695

    0.000026

    0.09609

    0.00205

    0.28203

    −9.20

    JSB1502@21

    0.281966

    0.000020

    0.002103

    0.000129

    0.06847

    0.00278

    0.28193

    −11.8

    JSB1502@24

    0.282532

    0.000018

    0.002106

    0.000090

    0.06289

    0.00177

    0.28252

    −3.83

    JSB1502@25

    0.282970

    0.000018

    0.000796

    0.000006

    0.02905

    0.00046

    0.28297

    10.5

    JSB1502@27

    0.281868

    0.000059

    0.003483

    0.000033

    0.09148

    0.00101

    0.28186

    −28.4

    JSB1502@29

    0.282545

    0.000018

    0.002291

    0.000056

    0.06663

    0.00149

    0.28253

    −2.00

    JSB1502@32

    0.281899

    0.000046

    0.002681

    0.000114

    0.11839

    0.00623

    0.28182

    2.36

  • 表 3   汉诺坝碳酸岩中锆石微量元素含量a)

    分析点号

    年龄(Ma)

    Ti

    Y

    Nb

    La

    Ce

    Pr

    Nd

    Sm

    Eu

    Gd

    Tb

    Dy

    Ho

    Er

    Tm

    Yb

    Lu

    Hf

    Ta

    Pb

    Th

    U

    JSB1502-02

    58

    9.17

    2488

    44.0

    0.098

    123

    0.17

    1.21

    2.73

    0.21

    19.1

    9.55

    130

    56.3

    349

    84.2

    958

    196

    14446

    14.2

    6.24

    1969

    6858

    JSB1502-03

    289

    1.49

    2984

    18.2

    0.73

    12.6

    0.23

    2.12

    5.22

    0.67

    67.0

    26.3

    288

    88.7

    397

    71.8

    669

    128

    11439

    9.37

    20.0

    988

    6122

    JSB1502-07

    1873

    14.2

    1711

    3.56

    0.12

    38.6

    0.00

    0.99

    4.51

    0.74

    34.8

    10.6

    139

    51.6

    267

    53.5

    542

    106

    10431

    1.40

    11.7

    76.4

    201

    JSB1502-10

    2048

    13.3

    1582

    0.91

    0.052

    2.64

    0.18

    2.63

    3.84

    0.092

    36.9

    13.2

    148

    46.0

    220

    38.1

    349

    61.2

    12236

    0.52

    12.7

    86.6

    225

    JSB1502-11

    1972

    58.6

    969

    1.75

    0.17

    7.27

    0.47

    6.14

    7.00

    0.81

    37.1

    9.24

    102

    30.6

    139

    24.0

    222

    38.6

    9874

    0.51

    13.2

    93.6

    85.1

    JSB1502-21

    221

    /

    1120

    2.15

    2.69

    14.9

    1.51

    5.27

    3.64

    0.17

    18.4

    6.34

    84.7

    32.6

    175

    34.8

    347

    67.9

    12256

    2.49

    2.94

    176

    398

    JSB1502-23

    373

    7.65

    854

    1.28

    0.26

    10.3

    0.00

    0.11

    2.42

    0.43

    12.6

    5.12

    65.0

    24.3

    131

    26.6

    282

    55.9

    9561

    0.75

    1.58

    73.4

    78.2

    JSB1502-24

    1392

    19.1

    966

    2.79

    0.86

    14.9

    0.81

    4.99

    4.65

    1.31

    19.3

    6.87

    80.9

    29.8

    158

    32.4

    320

    62.9

    9787

    0.70

    5.70

    37.5

    120

    JSB1502-26

    162

    13.5

    1174

    7.67

    0.09

    20.0

    0.30

    2.82

    5.42

    0.91

    29.7

    8.37

    98.7

    39.9

    152

    45.4

    357

    68.7

    10766

    8.52

    62

    1197

    1974

    JSB1502-29

    240

    /

    2434

    8.37

    0.0

    4.47

    0.13

    1.12

    3.89

    0.41

    46.9

    18.7

    225

    70.1

    312

    55.6

    527

    97.1

    11759

    4.85

    5.71

    288

    3097

    JSB1502-30

    266

    3.76

    1162

    1.80

    0.0

    17.1

    0.023

    1.19

    3.25

    1.51

    17.8

    6.50

    84.0

    32.0

    176

    38.6

    436

    98.6

    9273

    0.91

    7.98

    355

    465

    JSB1502-31

    393

    3.27

    1362

    2.24

    3.01

    16.8

    1.89

    14.3

    8.52

    2.33

    41.4

    12.2

    134

    41.4

    199

    37.0

    359

    64.9

    10094

    1.10

    9.55

    279

    500

    JSB1502-32

    908

    13.8

    325

    0.36

    0.04

    2.01

    0.012

    0.89

    0.96

    0.15

    8.95

    2.38

    27.8

    9.85

    50.8

    9.97

    102

    19.8

    8267

    0.21

    1.56

    20.4

    56.7

    JSB1502-33

    2124

    17.1

    2049

    5.81

    8.59

    59.8

    4.00

    20.3

    11.8

    2.05

    54.2

    16.8

    197

    61.6

    303

    55.4

    538

    96.7

    9472

    2.37

    42.8

    223

    169

    JSB1502-34

    2115

    26.4

    794

    3.05

    6.93

    38.6

    2.42

    11.0

    4.18

    1.00

    19.3

    5.60

    70.7

    24.1

    122

    24.4

    240

    47.9

    9970

    1.38

    9.63

    53.1

    73.6

    JSB1502-36

    1122

    45.8

    4242

    2.30

    6.99

    16.2

    2.27

    15.8

    12.9

    2.59

    90.5

    34.0

    381

    120

    561

    105

    976

    163

    10388

    0.89

    16.8

    173

    670

    JSB1502-40

    252

    13.8

    1364

    1.32

    0.40

    4.90

    0.28

    2.97

    4.77

    0.69

    31.1

    10.3

    120

    39.2

    195

    39.0

    378

    69.6

    8960

    0.74

    7.48

    172

    502

    JSB1502-42

    1900

    87.7

    566

    1.28

    0.23

    2.98

    0.34

    2.08

    0.68

    0.59

    8.54

    2.58

    40.3

    19.5

    140

    43.0

    628

    149

    12038

    1.15

    23.5

    15.0

    265

    JSB1502-44

    2300

    45.7

    1045

    5.67

    0.25

    13.0

    0.25

    2.28

    2.07

    0.24

    19.3

    6.90

    89.0

    31.4

    161

    30.4

    301

    54.4

    10604

    2.33

    29.3

    129

    267

    JSB1502-54

    681

    4.93

    814

    4.85

    0.51

    59.1

    0.18

    2.09

    3.87

    1.09

    17.9

    5.64

    66.9

    20.7

    119

    25.4

    266

    54.2

    10262

    1.27

    20.1

    359

    354

    JSB1502-55

    240

    6.31

    1598

    4.86

    30.2

    93.7

    10.6

    42.1

    11.9

    0.51

    32.8

    10.7

    126

    45.4

    240

    48.0

    481

    94.6

    8796

    2.22

    9.89

    456

    742

    JSB1502-56

    205

    13.7

    897

    2.76

    0.26

    34.2

    0.42

    2.88

    4.69

    1.01

    22.2

    6.76

    78.0

    25.7

    129

    25.8

    262

    50.7

    10932

    1.37

    6.11

    325

    479

    JSB1502-57

    1066

    89.0

    2255

    2.99

    3.82

    26.4

    3.11

    17.7

    17.5

    10.4

    86.2

    28.6

    270

    72.2

    299

    50.9

    464

    73.0

    12237

    0.96

    11.2

    200

    430

    JSB1502-59

    1973

    17.3

    461

    1.15

    0.24

    3.62

    0.41

    0.33

    2.93

    3.22

    19.1

    6.02

    50.9

    12.1

    48.3

    10.3

    98.2

    16.8

    12588

    0.50

    6.71

    37.0

    582

    JSB1502-60

    269

    8.58

    2311

    4.26

    0.56

    7.32

    0.57

    3.33

    6.20

    1.88

    44.8

    18.1

    204

    65.7

    318

    59.8

    580

    110

    10763

    2.33

    13.0

    274

    2454

    JSB1502@02

    406

    3.29

    1717

    6.48

    0.28

    34.1

    0.22

    3.16

    5.68

    0.96

    33.0

    12.3

    149

    59.4

    281

    63.0

    622

    115

    9024

    2.87

    73.3

    538

    1020

    JSB1502@06

    442

    17.7

    966

    2.46

    11.7

    198

    7.73

    51.6

    33.5

    7.44

    59.6

    11.3

    95.7

    31.9

    139

    30.2

    303

    60.6

    10705

    1.49

    61.1

    350

    660

    JSB1502@08

    439

    159

    585

    2.17

    0.67

    12.0

    0.20

    1.83

    2.82

    0.24

    13.6

    4.42

    50.6

    19.2

    89.9

    20.1

    205

    41.7

    9657

    2.22

    24.7

    160

    292

    JSB1502@11

    341

    50.0

    2823

    8.11

    9.10

    77.2

    11.9

    81.1

    54.1

    15.6

    110

    32.3

    332

    104.0

    422

    88.7

    807

    143

    8740

    3.94

    54.7

    585

    1190

    JSB1502@29

    294

    59.7

    1611

    4.11

    0.58

    22.8

    0.65

    5.53

    6.28

    2.34

    28.2

    10.60

    123.0

    53.2

    261

    58.2

    598

    129

    10196

    1.06

    27.1

    282

    428

    微量元素含量单位为ppm

qqqq

Contact and support