logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 49 , Issue 8 : 084506(2019) https://doi.org/10.1360/SSPMA2018-00356

Search and analysis on quasi-satellite orbits around Martian moon Phobos

More info
  • ReceivedOct 23, 2018
  • AcceptedFeb 14, 2019
  • PublishedApr 30, 2019
PACS numbers

Abstract


Funding

国家自然科学基金(11872007,11432001,11602009)

中国科协青年人才托举工程(2017QNRC001)

中央高校基本科研业务费专项资金


References

[1] Rosenblatt P. The origin of the Martian moons revisited. Astron Astrophys Rev, 2011, 1944 CrossRef ADS Google Scholar

[2] Duxbury T C, Zakharov A V, Hoffmann H, et al. Spacecraft exploration of Phobos and Deimos. Planet Space Sci, 2014, 1029-17 CrossRef ADS Google Scholar

[3] Sagdeev R Z, Zakharov A V. Brief history of the Phobos mission. Nature, 1989, 341581-585 CrossRef ADS Google Scholar

[4] Gao J L, Zhang X Q. The soviet phobos probe (in Chinese). Missiles Spacecraft, 1987, 11: 24–27 [高景林, 张遐圻. 苏联的火卫一探测器. 世界导弹与航天, 1987, 11: 24–27]. Google Scholar

[5] Gil P J S, Schwartz J. Simulations of quasi-satellite orbits around Phobos. J Guidance Control Dyn, 2010, 33901-914 CrossRef ADS Google Scholar

[6] Li H Y. Russian Phobos-grunt project (part 1) (in Chinese). Aerospace China, 2011, 3: 32–36 [李浩悦. 俄罗斯“火卫一-土壤”计划(上). 中国航天, 2011, 3: 32–36]. Google Scholar

[7] Li H Y. Russian Phobos-grunt project (part 2) (in Chinese). Aerospace China, 2011, 4: 32–35 [李浩悦. 俄罗斯“火卫一-土壤”计划(下). 中国航天, 2011, 4: 32–35]. Google Scholar

[8] Zhang Y M. Phobos-grunt which carries Yinghuo-1 failed to Change orbit as planned (in Chinese). Space Inter, 2011, 12: 18–24 [张扬眉. 携带萤火-1的“火卫一-土壤”探测器未能按计划变轨. 国际太空, 2011, 12: 18–24]. Google Scholar

[9] Oberst J, Wickhusen K, Willner K, et al. DePhine—The deimos and phobos interior explorer. Adv Space Res, 2018, 622220-2238 CrossRef ADS Google Scholar

[10] Campagnola S, Yam C H, Tsuda Y, et al. Mission analysis for the Martian Moons Explorer (MMX) mission. Acta Astronaut, 2018, 146409-417 CrossRef ADS Google Scholar

[11] Kogan A I. Distant satellite orbits in the restricted circular three body problem. Cosmic Res, 1989, 26: 705–710. Google Scholar

[12] Spiridonova S, Wickhusen K, Kahle R, et al. Quasi-satellite orbits around deimos and Phobos motivated by the dephine mission proposal. In: Proceedings of the 26th International Symposium on Space Flight Dynamics. Matsuyama, 2017. Google Scholar

[13] Broucke R A. Periodic orbits in the restricted three body problem with earth-moon masses. Technical Report 32-1168, Jet Propulsion Laboratory, 1968. Google Scholar

[14] Hénon M. Numerical exploration of the restricted problem, V. Astron Astrophys, 1969, 1: 223–238. Google Scholar

[15] Benest D. Effects of the mass ratio on the existence of retrograde satellites in the circular plane restricted problem. Astron Astrophys, 1974, 32: 39. Google Scholar

[16] Wiesel W E. Stable orbits about the martian moons. J Guidance Control Dyn, 1993, 16434-440 CrossRef ADS Google Scholar

[17] Cabral F S P, Gil P. On the Stability of Quasi-Satellite Orbits in the Elliptic Restricted Three-Body Problem. Dissertation for Master Degree. Lisbon: Universidade Técnica de Lisboa, 2011. Google Scholar

[18] Zamaro M, Biggs J D. Identification of new orbits to enable future mission opportunities for the human exploration of the Martian moon Phobos. Acta Astronaut, 2016, 119160-182 CrossRef ADS Google Scholar

[19] Zamaro M, Biggs J. Natural and Artificial Orbits Around the Martian Moon Phobos. Dissertation for Doctoral Degree. Strathclyde: University of Strathclyde, 2015. Google Scholar

[20] Canalias E, Lorda L, Martin T, et al. Trajectory analysis for the phobos proximity phase of the MMX mission. In: Proceedings of the International Symposium on Space Technology and Science. Ehime, 2017. 3–9. Google Scholar

[21] Scheeres D J, Van wal S, Olikara Z, et al. Dynamics in the phobos environment. Adv Space Res, 2019, 63476-495 CrossRef ADS Google Scholar

[22] Bezrouk C, Parker J S. Ballistic capture into distant retrograde orbits around Phobos: An approach to entering orbit around Phobos without a critical maneuver near the moon. Celest Mech Dyn Astr, 2018, 13010 CrossRef ADS Google Scholar

[23] Werner R A, Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celestial Mech Dyn Astron, 1996, 65: 313–344. Google Scholar

[24] Jiang Y, Li H N. Orbital Mechanics of Asteroid Explorer (in Chinese). Beijing: China Aerospace Publishing House, 2017. 2–3 [姜宇, 李恒年. 小行星探测器轨道力学. 北京: 中国宇航出版社, 2017. 2–3]. Google Scholar

qqqq

Contact and support