logo

More info
  • ReceivedMar 4, 2018
  • AcceptedApr 2, 2018
  • PublishedOct 10, 2018
PACS numbers

Abstract


Funding

科学挑战专题(TZ2016005)

国家重点研发计划(2017YFA0403300)

国家自然科学基金(11435011)


Acknowledgment

感谢星光、神光Ⅱ、神光Ⅲ原型和神光Ⅲ装置的诊断、制靶和驱动器运行团队, 感谢北京应用物理与计算数学研究所同事提供的理论模拟方面的支持, 感谢与中国科学技术大学闫锐老师、上海交通大学盛政明和翁苏明老师、国防科技大学卓红斌和银燕老师、湖南大学肖成卓老师等的有益讨论.


References

[1] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys Plasmas, 1995, 23933-4024 CrossRef ADS Google Scholar

[2] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys Plasmas, 2004, 11339-491 CrossRef ADS Google Scholar

[3] Atzeni S, Meyer-ter-Vehn J. The Physics of Inertial Fusion. Oxford: Oxford University Press, 2004. Google Scholar

[4] Kruer W L. The Physics of Laser Plasma Interaction. Boston: Addison-Wesley, 1988. Google Scholar

[5] Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys Plasmas, 2011, 18051001 CrossRef ADS Google Scholar

[6] Jiang S E, Zhang B H, Liu S Y, et al. Analysis of experiments on planar Au-plate target irradiated by 3 laser beams smoothed with CPP on Xingguang Ⅱ (in Chinese). Sci Sin-Phys Mech Astron, 2007, 37502-515 CrossRef Google Scholar

[7] Kruer W R. Intense laser plasma interactions: From Janus to Nova. Phys Fluids B-Plasma Phys, 1991, 32356-2366 CrossRef ADS Google Scholar

[8] Kirkwood R K, Moody J D, Kline J, et al. A review of laser-plasma interaction physics of indirect-drive fusion. Plasma Phys Control Fusion, 2013, 55103001 CrossRef ADS Google Scholar

[9] Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys Plasmas, 2016, 23055601 CrossRef ADS Google Scholar

[10] Meezan N B, Atherton L J, Callahan D A, et al. National ignition campaign hohlraum energetics. Phys Plasmas, 2010, 17056304 CrossRef ADS Google Scholar

[11] Hinkel D E, Berzak H L F, Ma T, et al. Development of improved radiation drive environment for high foot implosions at the national ignition facility. Phys Rev Lett, 2016, 117225002 CrossRef PubMed ADS Google Scholar

[12] Dawson J M. Nonlinear electron oscillations in a cold plasma. Phys Rev, 1959, 113383-387 CrossRef ADS Google Scholar

[13] Dubois D F, Forslund D W, Williams E A. Parametric instabilities in finite inhomogeneous media. Phys Rev Lett, 1974, 331013-1016 CrossRef ADS Google Scholar

[14] Rosenbluth M N. Parametric instabilities in inhomogeneous media. Phys Rev Lett, 1972, 29565-567 CrossRef ADS Google Scholar

[15] Rosenbluth M N, White R B, Liu C S. Temporal evolution of a three-wave parametric instability. Phys Rev Lett, 1973, 311190-1193 CrossRef ADS Google Scholar

[16] Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys Fluids, 1975, 181002-1016 CrossRef ADS Google Scholar

[17] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 1972, 239139-142 CrossRef ADS Google Scholar

[18] Glenzer S H, Berger R L, Divol L M, et al. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys Plasmas, 2001, 81692-1696 CrossRef ADS Google Scholar

[19] Moody J D, MacGowan B J, Rothenberg J E, et al. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys Rev Lett, 2001, 862810-2813 CrossRef PubMed ADS Google Scholar

[20] Froula D H, Divol L, Meezan N B, et al. Ideal laser-beam propagation through high-temperature ignition hohlraum plasmas. Phys Rev Lett, 2007, 98085001 CrossRef PubMed ADS Google Scholar

[21] Froula D H, Divol L, Berger R L, et al. Direct measurements of an increased threshold for stimulated brillouin scattering with polarization smoothing in ignition hohlraum plasmas. Phys Rev Lett, 2008, 101115002 CrossRef PubMed ADS Google Scholar

[22] Rousseaux C, Huser G, Loiseau P, et al. Laser parametric instability experiments of a 3ω, 15  kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d’Intégration laser facility. Phys Plasmas, 2015, 22022706 CrossRef ADS Google Scholar

[23] Glize K, Rousseaux C, Bénisti D, et al. Stimulated backward Raman scattering driven collectively by two picosecond laser pulses in a bi- or multi-speckle configuration. Phys Plasmas, 2017, 24032708 CrossRef ADS Google Scholar

[24] Ding Y K, Zheng Z J, Tang D Y, et al. 0.53 μm laser-plasma interaction (in Chinese). High Power Laser Part Beams, 1996, 8: 215–220 [丁永坤, 郑志坚, 唐道源, 等. 0.53 μm激光与等离子体相互作用实验研究. 强激光与粒子束, 1996, 8: 215–220]. Google Scholar

[25] Qi L Y, Mei Q Y, Zhao X W, et al. Study of abnormal absorption and hot electrons for hohlraum targets irradiated by 1.053 μm laser light (in Chinese). High Power Laser Part Beams, 1996, 8: 303–309 [祁兰英, 梅启庸, 赵雪薇, 等. 1.053 μm激光在腔靶中反常吸收和超热电子的研究. 强激光与粒子束, 1996, 8: 303–309]. Google Scholar

[26] Kauffman R L, Suter L J, Darrow C B, et al. High temperatures in inertial confinement fusion radiation cavities heated with 0.35 μm light. Phys Rev Lett, 1994, 732320-2323 CrossRef PubMed ADS Google Scholar

[27] Lindl J D. Inertial Confinement Fusion. New York: Springer-Verlag, 1998. Google Scholar

[28] Suter L J, Hauer A A, Powers L V, et al. Modeling and interpretation of Nova’s symmetry scaling data base. Phys Rev Lett, 1994, 732328-2331 CrossRef PubMed ADS Google Scholar

[29] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys Rev Lett, 1984, 531057-1060 CrossRef ADS Google Scholar

[30] Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles. Opt Lett, 1995, 20764-766 CrossRef ADS Google Scholar

[31] Dixit S N, Nugent K A, Lawson J K, et al. Kinoform phase plates for focal plane irradiance profile control. Opt Lett, 1994, 19417-419 CrossRef ADS Google Scholar

[32] Néauport J, Journot E, Gaborit G, et al. Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities. Appl Opt, 2005, 443143-3152 CrossRef ADS Google Scholar

[33] Hao L, Zhao Y, Yang D, et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code. Phys Plasmas, 2014, 21072705 CrossRef ADS Google Scholar

[34] Li Z, Zheng J, Jiang X, et al. Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target. Phys Plasmas, 2012, 19062703 CrossRef ADS Google Scholar

[35] Lan K, Li Z, Xie X, et al. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target. Phys Rev E, 2017, 95031202 CrossRef PubMed ADS Google Scholar

[36] Zheng W, Wei X, Zhu Q, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility. Matter Radiat Extrem, 2017, 2243-255 CrossRef Google Scholar

[37] Deng X, Zhu Q, Zheng W, et al. Research and construction progress of SG-III laser facility. Proc SPIE, 2014, 9266: 926607. Google Scholar

[38] Tamor S. Effect of partial coherence on laser-driven plasma instabilities. Phys Fluids, 1973, 161169-1171 CrossRef ADS Google Scholar

[39] Valeo E J, Oberman C R. Model of parametric excitation by an imperfect pump. Phys Rev Lett, 1973, 301035-1038 CrossRef ADS Google Scholar

[40] Thomson J J, Kruer W L, Bodner S E, et al. Parametric instability thresholds and their control. Phys Fluids, 1974, 17849-851 CrossRef ADS Google Scholar

[41] Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability. Phys Fluids, 1974, 171608-1613 CrossRef ADS Google Scholar

[42] Mima K, Nishikawa K. Handbook of Basic Plasma Physics II. Amsterdam: North-Holland Publishing Company, 1983. Google Scholar

[43] Laval G, Pellat R, Pesme D, et al. Parametric instabilities in the presence of space-time random fluctuations. Phys Fluids, 1977, 202049-2057 CrossRef ADS Google Scholar

[44] Yamanaka C, Yamanaka T, Sasaki T, et al. Brillouin backscattering and parametric double resonance in laser-produced plasma. Phys Rev Lett, 1974, 321038-1041 CrossRef ADS Google Scholar

[45] Lehmberg R H, Rothenberg J E. Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks. J Appl Phys, 2000, 871012-1022 CrossRef ADS Google Scholar

[46] Albright B J, Yin L, Afeyan B. Control of stimulated raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay. Phys Rev Lett, 2014, 113045002 CrossRef PubMed ADS arXiv Google Scholar

[47] Liu Z J, Zheng C Y, Cao L H, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light. Phys Plasmas, 2017, 24032701 CrossRef ADS Google Scholar

[48] Zhao Y, Weng S, Chen M, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma. Phys Plasmas, 2017, 24112102 CrossRef ADS arXiv Google Scholar

[49] Town R P J, Rosen M D, Michel P A, et al. Analysis of the national ignition facility ignition hohlraum energetics experiments. Phys Plasmas, 2011, 18056302 CrossRef ADS Google Scholar

[50] Kline J L, Callahan D A, Glenzer S H, et al. Hohlraum energetics scaling to 520 TW on the national ignition facility. Phys Plasmas, 2013, 20056314 CrossRef ADS Google Scholar

[51] Moody J D, Strozzi D J, Divol L, et al. Raman backscatter as a remote laser power sensor in high-energy-density plasmas. Phys Rev Lett, 2013, 111025001 CrossRef PubMed ADS arXiv Google Scholar

[52] Rosen M D, Scott H A, Hinkel D E, et al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums. High Energy Density Phys, 2011, 7180-190 CrossRef ADS Google Scholar

[53] McKinstrie C J, Giacone R E, Startsev E A. Accurate formulas for the Landau damping rates of electrostatic waves. Phys Plasmas, 1999, 6463-466 CrossRef ADS Google Scholar

[54] Vu H X, Wallace J M, Bezzerides B. An analytical and numerical investigation of ion acoustic waves in a two-ion plasma. Phys Plasmas, 1994, 13542-3556 CrossRef ADS Google Scholar

[55] Williams E A, Berger R L, Drake R P, et al. The frequency and damping of ion acoustic waves in hydrocarbon (CH) and two-ion-species plasmas. Phys Plasmas, 1995, 2129-138 CrossRef ADS Google Scholar

[56] Pawley C J, Huey H E, Luhmann Jr. N C. Observation of the growth and saturation of ion waves generated by optical mixing. Phys Rev Lett, 1982, 49877-880 CrossRef ADS Google Scholar

[57] Neumayer P, Berger R L, Divol L, et al. Suppression of stimulated brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas. Phys Rev Lett, 2008, 100105001 CrossRef PubMed ADS Google Scholar

[58] Gong T, Li Z, Zhao B, et al. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach. Phys Plasmas, 2013, 20092702 CrossRef ADS Google Scholar

[59] Hao L, Li J, Liu W D, et al. Simulation of stimulated Brillouin scattering and stimulated Raman scattering in shock ignition. Phys Plasmas, 2016, 23042702 CrossRef ADS arXiv Google Scholar

[60] Cohen B I, Lasinski B F, Langdon A B, et al. Resonantly excited nonlinear ion waves. Phys Plasmas, 1997, 4956-977 CrossRef ADS Google Scholar

[61] Giacone R E, Vu H X. Nonlinear kinetic simulations of stimulated Brillouin scattering. Phys Plasmas, 1998, 51455-1460 CrossRef ADS Google Scholar

[62] Williams E A, Cohen B I, Divol L, et al. Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering. Phys Plasmas, 2004, 11231-244 CrossRef ADS Google Scholar

[63] Cohen B I, Williams E A, Vu H X. Kinetic-ion simulations addressing whether ion trapping inflates stimulated Brillouin backscattering reflectivities. Phys Plasmas, 2007, 14102707 CrossRef ADS arXiv Google Scholar

[64] Froula D H, Divol L, Glenzer S H. Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering. Phys Rev Lett, 2002, 88105003 CrossRef PubMed ADS Google Scholar

[65] Froula D H, Divol L, Offenberger A A, et al. Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping-induced frequency shifts. Phys Rev Lett, 2004, 93035001 CrossRef PubMed ADS Google Scholar

[66] Karttunen S J. Saturation of parametric instabilities by the nonlinear decay of electrostatic daughter wave. Plasma Phys, 1980, 22151-162 CrossRef ADS Google Scholar

[67] Karttunen S J, Heikkinen J A. Particle trapping in stimulated scattering processes. Plasma Phys, 1981, 23869-880 CrossRef ADS Google Scholar

[68] Karttunen S J, McMullin J N, Offenberger A A. Saturation of stimulated Brillouin scattering by ion wave decay in a dissipative plasma. Phys Fluids, 1981, 24447-451 CrossRef ADS Google Scholar

[69] Heikkinen J A, Karttunen S J, Salomaa R R E. Ion acoustic nonlinearities in stimulated Brillouin scattering. Phys Fluids, 1984, 27707-720 CrossRef ADS Google Scholar

[70] Glenzer S H, Divol L M, Berger R L, et al. Thomson scattering measurements of saturated ion waves in laser fusion plasmas. Phys Rev Lett, 2001, 862565-2568 CrossRef PubMed ADS Google Scholar

[71] Bandulet H C, Labaune C, Lewis K, et al. Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability. Phys Rev Lett, 2004, 93035002 CrossRef PubMed ADS Google Scholar

[72] Cohen B I, Kaufman A N. Effects of beat-wave electron trapping on stimulated Raman and Thomson scattering. Phys Fluids, 1978, 21404-412 CrossRef ADS Google Scholar

[73] Mourenas D. Saturation of stimulated Raman backscatter in strongly turbulent plasmas. Phys Plasmas, 1999, 61258-1269 CrossRef ADS Google Scholar

[74] Rose H A, Russell D A. A self-consistent trapping model of driven electron plasma waves and limits on stimulated Raman scatter. Phys Plasmas, 2001, 84784-4799 CrossRef ADS Google Scholar

[75] Morales G J, O’Neil T M. Nonlinear frequency shift of an electron plasma wave. Phys Rev Lett, 1972, 28417-420 CrossRef ADS Google Scholar

[76] Vu H X, DuBois D F, Bezzerides B. Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. Phys Rev Lett, 2001, 864306-4309 CrossRef PubMed ADS Google Scholar

[77] Drake R P, Batha S H. The influence of subsidiary Langmuir decay on the spectrum of stimulated Raman scattering. Phys Fluids B-Plasma Phys, 1991, 32936-2938 CrossRef ADS Google Scholar

[78] Kolber T, Rozmus W, Tikhonchuk V T. Saturation of stimulated Raman scattering by Langmuir and ion-acoustic wave coupling. Phys Fluids B-Plasma Phys, 1993, 5138-150 CrossRef ADS Google Scholar

[79] Kolber T, Rozmus W, Tikhonchuk V T. Saturation of backward stimulated Raman scattering and enhancement of laser light scattering in plasmas. Phys Plasmas, 1995, 2256-273 CrossRef ADS Google Scholar

[80] Everett M J, Lal A, Clayton C E, et al. Coupling between electron plasma waves in laser-plasma interactions. Phys Plasmas, 1996, 32041-2046 CrossRef ADS Google Scholar

[81] Fernández J C, Bauer B S, Cobble J A, et al. Measurements of laser-plasma instability relevant to ignition hohlraums. Phys Plasmas, 1997, 41849-1856 CrossRef ADS Google Scholar

[82] Labaune C, Baldis H A, Bauer B S, et al. Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma. Phys Plasmas, 1998, 5234-242 CrossRef ADS Google Scholar

[83] Vu H X, DuBois D F, Bezzerides B. Kinetic inflation of stimulated Raman backscatter in regimes of high linear Landau damping. Phys Plasmas, 2002, 91745-1763 CrossRef ADS Google Scholar

[84] Moody J D, Williams E A, Lours L, et al. First measurement of backscatter dependence on ion acoustic damping in a high density helium/hydrogen laser-plasma. Phys Plasmas, 2004, 112060-2067 CrossRef ADS Google Scholar

[85] Fernández J C, Cobble J A, Failor B H, et al. Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas. Phys Rev Lett, 1996, 772702-2705 CrossRef PubMed ADS Google Scholar

[86] Kirkwood R K, MacGowan B J, Montgomery D S, et al. Effect of ion-wave damping on stimulated Raman scattering in high- Z laser-produced plasmas. Phys Rev Lett, 1996, 772706-2709 CrossRef PubMed ADS Google Scholar

[87] Depierreux S, Fuchs J, Labaune C, et al. First observation of ion acoustic waves produced by the Langmuir decay instability. Phys Rev Lett, 2000, 842869-2872 CrossRef PubMed ADS Google Scholar

[88] Depierreux S, Labaune C, Fuchs J, et al. Langmuir decay instability cascade in laser-plasma experiments. Phys Rev Lett, 2002, 89045001 CrossRef PubMed ADS Google Scholar

[89] Zhao Y, Yu L L, Weng S M, et al. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering. Phys Plasmas, 2017, 24092116 CrossRef ADS Google Scholar

[90] Estabrook K, Kruer W L, Haines M G. Nonlinear features of stimulated Brillouin and Raman scattering. Phys Fluids B-Plasma Phys, 1989, 11282-1286 CrossRef ADS Google Scholar

[91] Baldis H A, Villeneuve D M, Labaune C, et al. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas. Phys Fluids B-Plasma Phys, 1991, 32341-2348 CrossRef ADS Google Scholar

[92] Montgomery D S, Afeyan B B, Cobble J A, et al. Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas. Phys Plasmas, 1998, 51973-1980 CrossRef ADS Google Scholar

[93] Berger R L. Nonlinear competition between stimulated Brillouin-scattered light waves in plasmas. Phys Rev Lett, 1983, 511554-1557 CrossRef ADS Google Scholar

[94] Baldis H A, Young P E, Drake R P, et al. Competition between the stimulated Raman and Brillouin scattering instabilities in 0.35-μm irradiated CH foil targets. Phys Rev Lett, 1989, 622829-2832 CrossRef PubMed ADS Google Scholar

[95] Baldis H A, Labaune C. Interplay between parametric instabilities in the context of inertial confinement fusion. Plasma Phys Control Fusion, 1997, 39A51-A57 CrossRef ADS Google Scholar

[96] Cohen B I, Baldis H A, Berger R L, et al. Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments. Phys Plasmas, 2001, 8571-591 CrossRef ADS Google Scholar

[97] Michel P, Divol L, Dewald E L, et al. Multibeam stimulated Raman scattering in inertial confinement fusion conditions. Phys Rev Lett, 2015, 115055003 CrossRef PubMed ADS Google Scholar

[98] Dewald E L, Hartemann F, Michel P, et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums. Phys Rev Lett, 2016, 116075003 CrossRef PubMed ADS Google Scholar

[99] Neuville C, Tassin V, Pesme D, et al. Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves. Phys Rev Lett, 2016, 116235002 CrossRef PubMed ADS Google Scholar

[100] Michel P, Rozmus W, Williams E A, et al. Stochastic ion heating from many overlapping laser beams in fusion plasmas. Phys Rev Lett, 2012, 109195004 CrossRef PubMed ADS Google Scholar

[101] Strozzi D J, Bailey D S, Michel P, et al. Interplay of laser-plasma interactions and inertial fusion hydrodynamics. Phys Rev Lett, 2017, 118025002 CrossRef PubMed ADS arXiv Google Scholar

[102] Hao L, Yan R, Li J, et al. Nonlinear fluid simulation study of stimulated Raman and Brillouin scatterings in shock ignition. Phys Plasm, 2017, 24062709 CrossRef ADS arXiv Google Scholar

qqqq

Contact and support