logo

More info
  • ReceivedJan 10, 2018
  • AcceptedMar 26, 2018
  • PublishedMay 10, 2018
PACS numbers

Abstract


Funded by

国家重点研发计划(2017YFA0403300,2017YFA0403200)

国家自然科学基金(11775201,11505169)

科学挑战专题(TZ2016001)


Acknowledgment

感谢中国工程物理研究院激光聚变研究中心诊断、制靶和驱动器相关的同志. 感谢应用物理与计算数学研究所相关同志的帮助和指导. 感谢审稿人提出的许多建议.


References

[1] Peng H S. ICF and related laser programs in China. In: Proceedings of the Laser Optics ’93 the International Society for Optics and Photonics. St. Petersburg, 1993. Google Scholar

[2] Peng H S. Inertial confinement fusion program at CAEP. In: Proceedings of the 12th International Conference on Laser Interaction and Related Plasma Phenomena. Osaka, 1995. Google Scholar

[3] Peng H S. Progress in the CAEP ICF program. In: Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena. Chengdu, 1997. Google Scholar

[4] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys Plasmas, 1995, 2: 3933-4024 CrossRef ADS Google Scholar

[5] Zheng Z J, Guo Q, Cheng J X, et al. Implosion performance of laser driven exploding pusher targets (in Chinese). High Power Laser Part Beams, 1989, 1: 139–144 [郑志坚, 郭秦, 成金秀, 等. 激光驱动爆推靶特性研究. 强激光与粒子束, 1989, 1: 139–144]. Google Scholar

[6] Zheng Z J, Tang D Y, Xie P. First indirectly driven implosion experiments in China (in Chinese). High Power Laser Part Beams, 1991, 2: 146, 148 [郑志坚, 唐道源, 谢平. 我国首次间接驱动内爆出中子实验成功. 强激光与粒子束, 1991, 2: 146, 148]. Google Scholar

[7] Ding Y N. Current state of experimental study of laser fusion in China (in Chinese). Trends in Nucl Phys, 1995, 12: 21–26 [丁耀南. 我国激光核聚变实验研究概述. 核物理动态, 1995, 12: 21–26]. Google Scholar

[8] Lin Z Q, Wang S J, Fang D Y, et al. Successful operation of 8 beam SG-II laser facility for both 1ω0 and 3ω0 output. High Power Laser Part Beams, 2002, 3: 403–407. Google Scholar

[9] Li S W, Song T M, Yi R Q, et al. Quantitative study of radiation temperature for gold hohlraum on SG-II laser facility (in Chinese). Acta Phys Sin, 2011, 60: 055207 [李三伟, 宋天明, 易荣清, 等. 神光II激光装置黑腔辐射温度定量研究. 物理学报, 2011, 60: 055207]. Google Scholar

[10] Wu J F, Miao W Y, Wang L F, et al. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility. Phys Plasmas, 2014, 21: 042707 CrossRef ADS Google Scholar

[11] Zheng Z J, Ding Y K, Ding Y N, et al. Recent progress and application of diagnostic technique in laser fusion (in Chinese). High Power Laser Part Beams, 2003, 15: 1073–1078 [郑志坚, 丁永坤, 丁耀南, 等. 激光惯性约束聚变综合诊断系统. 强激光与粒子束, 2003, 15: 1073–1078]. Google Scholar

[12] Zheng W G, Wei X F, Zhu Q H, et al. SG-III laser facility has successfully achieved 60 TW/180 kJ ultraviolet laser (351 nm) output (in Chinese). High Power Laser Part Beams, 2016, 28: 019901 [郑万国, 魏晓峰, 朱启华, 等. 神光-III主机装置成功实现60 TW/180 kJ三倍频输出. 强激光与粒子束, 2016, 28: 019901]. Google Scholar

[13] Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009–2012. Phys Plasmas, 2009, 21: 020501 CrossRef ADS Google Scholar

[14] 2015 Review of the Inertial Confinement Fusion and High Energy Density Science Portfolio. Review Report, National Nuclear Security Administration, Department of Energy, 2016. Google Scholar

[15] Park H S, Hurricane O A, Callahan D A, et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility. Phys Rev Lett, 2014, 112: 055001 CrossRef PubMed ADS Google Scholar

[16] Zheng Z J, Xie P, Sun K X, et al. Elementary explorations for hohlraum physics (in Chinese). High Power Laser Part Beams, 1993, 5: 575–580 [郑志坚, 谢平, 孙可熙, 等. 黑腔物理实验的定标规律. 强激光与粒子束, 1993, 5: 575–580]. Google Scholar

[17] Ding Y K, Zheng Z J, Tang D Y, et al. 0.53 μm laser-plasma interaction (in Chinese). High Power Laser Part Beams, 1996, 5: 215–220 [丁永坤, 郑志坚, 唐道源, 等. 0.53 μm激光与等离子体相互作用实验研究. 强激光与粒子束, 1996, 5: 215–220]. Google Scholar

[18] Zhang J, Jiang R H, Zeng X C, et al. A theoretical model of exploding pusher targets (in Chinese). Nucl Fusion Plasma Phys, 1988, 8: 207–211 [张均, 姜荣洪, 曾先才, 等. 爆炸推进层靶的理论模型. 核聚变与等离子体物理, 1988, 8: 207–211]. Google Scholar

[19] Jiang R H, Li Y S, Ding S R, et al. “Mixing” influence on radiation driven implosion (in Chinese). High Power Laser Part Beams, 1996, 8: 221--226 [姜荣洪, 李云生, 丁生荣, 等. “混合”对辐射驱动内爆的影响. 强激光与粒子束, 1996, 8: 221--226]. Google Scholar

[20] Li S W, Yi R Q, Jiang X H et al. Experimental study of radiation temperature for gold hohlraum heated with 1 ns, 0.35 μm lasers on SG-III prototype laser facility (in Chinese). Acta Phys Sin, 2009, 58: 3255 [李三伟, 易荣清, 蒋小华, 等. 神光III原型1 ns激光驱动黑腔辐射温度实验研究. 物理学报, 2009, 58: 3255]. Google Scholar

[21] Ding Y K, Jiang S E, Liu S Y, et al. Recent progress on physical experiment and target diagnostics in Research Center of Laser Fusion (in Chinese). High Power Laser Part Beams, 2013, 25: 3077-3081 CrossRef Google Scholar

[22] Jiang S E, Ding Y K, Miao W Y, et al. Recent progress of inertial confinement fusion experiments in China (in Chinese). Sci China Ser G-Phys Mech Astron, 2009, 39: 1571-1583 CrossRef Google Scholar

[23] Pu Y D, Chen B L, Huang T X, et al. Experimental studies of implosion physics in the research of indirect-drive inertial confinement fusion (in Chinese). High Power Laser Part Beams, 2015, 27: 032015 [蒲昱东, 陈伯伦, 黄天晅, 等. 激光间接驱动惯性约束聚变内爆物理实验研究. 强激光与粒子束, 2015, 27: 032015]. Google Scholar

[24] Chen B L, Jiang W, Jing L F, et al. Reemission technique for early time, hohlraum radiation symmetry measurements on SGⅡ facility (in Chinese). High Power Laser Part Beams, 2013, 25: 385-388 CrossRef Google Scholar

[25] Liu S Y, Yang G H, Zhang J Y, et al. Experimental research of capsule implosion by X-ray backlighting radiography at Shenguang II (in Chinese). High Power Laser Part Beams, 2011, 23: 3333-3337 CrossRef Google Scholar

[26] Li H, Pu Y D, Jing L F, et al. Variation of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion (in Chinese). Acta Phys Sin, 2013, 62: 225204 [黎航, 蒲昱东, 景龙飞, 等. 间接驱动的内爆不对称性随腔长和时间变化的研究. 物理学报, 2013, 62: 225204]. Google Scholar

[27] Pu Y, Huang T, Wei M, et al. Spectroscopic studies of shell mix in directly driven implosion on SGIII prototype laser facility. Phys Plasmas, 2014, 21: 122707 CrossRef ADS Google Scholar

[28] Chen B, Yang Z, Wei M, et al. Implosion dynamics measurements by monochromatic X-ray radiography in inertial confinement fusion. Phys Plasmas, 2014, 21: 122705 CrossRef ADS Google Scholar

[29] Cao Z R, Ding Y K, Dong J J, et al. Researches and applications of X-ray high-spatial-resolution multi-energy microscope system (in Chinese). High Power and Particle Beams, 2015, 27: 100–114 [曹柱荣, 丁永坤, 董建军, 等. X射线高空间分辨多色显微成像系统研制及应用. 强激光与粒子束, 2015, 27: 100–114]. Google Scholar

[30] Wang F, Peng X, Liu S, et al. A line-imaging velocity interferometer technique for shock diagnostics without X-ray preheat limitation. Rev Sci Instruments, 2011, 82: 103108 CrossRef PubMed ADS Google Scholar

[31] Peng H S, Zheng Z J, Zhang B H, et al. Direct-drive implosion experiments on the SG-II laser facility. J Fusion Energy, 2000, 19: 81-85 CrossRef ADS Google Scholar

[32] Cheng J X, Zhen Z J, Chen H S, et al. Implosion compression characteristic of direct-driven ablation target with 1.06 μm laser (in Chinese). Acta Phys Sin, 2004, 53: 3419–3423 [成金秀, 郑志坚, 陈红素, 等, 1.06 μm激光直接驱动烧蚀靶内爆压缩特性. 物理学报, 2004, 53: 3419–3423]. Google Scholar

[33] Luo P Q, Zhang Y H, Zhang W Y, et al. Theoretical study of directly driven ablation on SGII using 1ω0 laser (in Chinese). Annu Rep ICF Prog China (1999--2000), 2001, 21 [罗平庆, 张永慧, 张维岩, 等. 神光II基频激光烧蚀靶实验的理论研究. ICF年报汇编1999--2000, 2001, 21]. Google Scholar

[34] Luo P Q, Yu R, Zhang Y H, et al. Theoretical study of exploding pusher implosion on SGII using 1ω0 laser (in Chinese). Annu Rep ICF Prog China (1999--2000), 2001, 29 [罗平庆, 于仁, 张永慧, 等. 神光II基频爆推靶实验的理论研究. ICF年报汇编1999--2000, 2001, 29]. Google Scholar

[35] Pu Y D, Kang D G, Huang T X, et al. Experimental studies of low-convergence-ratio implosions (in Chinese). Acta Phys Sin, 2014, 63: 125211 [蒲昱东, 康洞国, 黄天晅, 等. 小收缩比内爆实验初步研究. 物理学报, 2014, 63: 125211]. Google Scholar

[36] Sheng J T, Miao W Y, Li Y S, et al. Influence of non-LTE radiation ablation on imploding neutron yield (in Chinese). High Power Laser Part Beams, 2005, 3: 386–390 [盛家田, 缪文勇, 李沄生, 等. 非平衡辐射烧蚀对内爆中子产额的影响. 强激光与粒子束, 2005, 3: 386–390]. Google Scholar

[37] Zeng X C, Miao Z G, Chen F Z, et al. Improvement of asymmetry of radiation-driven implosion on SG-II facility. High Power Laser Part Beams, 1998, 10: 243–248. Google Scholar

[38] Gao Y M, Dai Z H. Influence of radiation-driven asymmetry on capsule compression (in Chinese). High Power Laser Part, 2010, 22: 1021-1025 CrossRef Google Scholar

[39] Tanaka K A, Yamanaka T, Nishihara K, et al. Cryogenic deuterium target experiments with the GEKKO XII, green laser system. Phys Plasmas, 1995, 2: 2495-2503 CrossRef ADS Google Scholar

[40] Henderson T M, Johnson R R. The implosion of cryogenic spherical shell targets. Appl Phys Lett, 1997, 31: 18-20 CrossRef ADS Google Scholar

[41] Stoeckl C, Chiritescu C, Delettrez J A, et al. First results from cryogenic target implosions on OMEGA. Phys Plasmas, 2002, 9: 2195-2201 CrossRef ADS Google Scholar

[42] Glenzer S H, Callahan D A, MacKinnon A J, et al. Cryogenic thermonuclear fuel implosions on the National Ignition Facility. Phys Plasmas, 2012, 19: 056318 CrossRef ADS Google Scholar

[43] Igumenshchev I V, Marshall F J, Marozas J A, et al. The effects of target mounts in direct-drive implosions on OMEGA. Phys Plasmas, 2009, 16: 082701 CrossRef ADS Google Scholar

[44] Pu Y D, Huang T X, Li H, et al. Direct drive implosion experiments on SGIII prototype laser facility: Assessing energy coupling efficiency and implosion symmetry. Phys Plasmas, 2012, 19: 072708 CrossRef ADS Google Scholar

[45] Pu Y D, Huang T X, Li P, et al. Preliminary results from direct-drive cryogenic target implosion experiments on SGIII prototype laser facility. Phys Plasmas, 2014, 21: 012703 CrossRef ADS Google Scholar

[46] Pu Y, Huang T, Lei H, et al. Direct-drive cryogenic-target implosion experiments on SGIII prototype laser facility. Phys Plasmas, 2015, 22: 042704 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Evolution of ICF research in China and US.

  • Figure 2

    (Color online) YOC of the DT implosion experiments on SG-II and SG-III prototype.

  • Figure 3

    (Color online) YOC of the DT implosion experiments on SG-II with varied filling pressure.

  • Figure 4

    (Color online) Schematic of cryogenic target assembly for directly driven implosion experiments.

  • Figure 5

    (Color online) Improvement of shot accuracy in the directly driven cryogenic layered target implosion experiments.

  • Figure 6

    (Color online) Comparing YOC achieved in 2015 on SG-III laser facility with that achieved previouly on SG-III prototype and SG-II.

  • Table 1   Target parameters used in DT implosion experiments on SG-II and SG-III prototype

    2002 SGII

    2005 SGII

    2010 SG-III原型

    2012 SG-III原型

    激光能量 (J)

    993–2431

    2100–2600

    2400–7800

    5700–7500

    黑腔长度 (μm)

    1350

    1350

    1700

    1700

    黑腔直径 (μm)

    800

    800

    1000

    1000

    激光注入孔直径 (μm)

    380

    380

    650

    650

    靶丸内直径 (μm)

    200

    200

    380

    250

    CH烧蚀层厚度 (μm)

    5–31

    10

    11–21

    11–28

    SiO2 (μm)

    2

    2

    2

    2

    DT压力 (atm)

    8–12

    80–150

    9–15

    80–130

qqqq

Contact and support