logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 47 , Issue 5 : 059509(2017) https://doi.org/10.1360/SSPMA2016-00517

A novel design of large full-steerable reflector antenna

More info
  • ReceivedDec 12, 2016
  • AcceptedFeb 14, 2017
  • PublishedApr 6, 2017
PACS numbers

Abstract


Funded by

国家自然科学基金重大项目(51490660,51490661)

国家重点基础研究发展计划(2015CB857100)


Acknowledgment

感谢新疆天文台台长王娜研究员的支持, 感谢许谦、项斌斌以及中国电子科技集团公司第39研究所张萍对南山26 m天线结构数据获取所提供的帮助.


References

[1] Rahmat-Samii Y, Haupt R. Reflector antenna developments: A perspective on the past, present and future. IEEE Antennas Propag Mag, 2015, 57: 85-95 CrossRef ADS Google Scholar

[2] Love A W. Arecibo observatory 40th anniversary celebration. IEEE Potentials, 2004, 23: 41-44 CrossRef Google Scholar

[3] Duan B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis. Mechatronics, 1999, 9: 53-64 CrossRef Google Scholar

[4] Nan R D. 500 m spherical reflector radio telescope FAST (in Chinese). Sci China Ser G-Phys Mech Astron, 2005, 35: 449-466 CrossRef Google Scholar

[5] Anderson R, Symmes A, Egan D. Replacement of the green bank telescope azimuth track. Proc SPIE, 2008, 63: 3026-3030 CrossRef Google Scholar

[6] Wang N. Xinjiang Qitai 110 m radio telescope (in Chinese). Sci Sin-Phys Mech Astron, 2014, 44: 783-794 CrossRef Google Scholar

[7] Xu Q, Wang N. Challenges for QTT structure. Proc SPIE, 2016, 9906: 99065L CrossRef Google Scholar

[8] Peng B, Jin C J, Du B, et al. China’s participation in the SKA—the world’s largest synthesis radio telescope (in Chinese). Sci Sin-Phys Mech Astron, 2012, 42: 1292-1307 CrossRef Google Scholar

[9] Xu W Y, Li P, Qiu Y Y, et al. Electrical performance analysis of metal space frame radome with structural deformation (in Chinese). J Mech Eng, 2016, 52: 57-63 CrossRef Google Scholar

[10] Von Hoerner S. Design of large steerable antennas. Astronl J, 1967, 72: 35 CrossRef ADS Google Scholar

[11] Woody D, Rasmussen P, Padin S, et al. The CCAT 25 m diameter submillimeter-wave telescope. Proc SPIE, 2012, 8444: 173-181 CrossRef Google Scholar

[12] Karcher H J. Telescopes as mechatronic systems. IEEE Antennas Propag Mag, 2006, 48: 17-37 CrossRef ADS Google Scholar

[13] Duan B Y. Antenna Structural Analysis, Optimization and Measurement (in Chinese). Xi’an: Xidian University Press, 1998 [段宝岩. 天线结构分析、优化与测量. 西安: 西安电子科技大学出版社, 1998]. Google Scholar

[14] Levy R. Computer-aided design of antenna structures and components. Comp Struct, 1976, 6: 419-428 CrossRef Google Scholar

[15] Eschenauer H A. Structural behaviour and optimal layout of light constructions. Arch Appl Mech, 2006, 75: 441-457 CrossRef ADS Google Scholar

[16] Felton L P, Dobbs M W. On optimized prestressed trusses. AIAA J, 1977, 15: 1037-1039 CrossRef ADS Google Scholar

[17] Jones T C, Bart-Smith H, Mikulas M M, et al. Finite element modeling and analysis of large pretensioned space structures. J Spacecraft Rockets, 2007, 44: 183-193 CrossRef ADS Google Scholar

[18] Liao L, Du B. Finite element analysis of cable-truss structures. In: Proceeding of Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, and Materials Conference. Orlando, 2010. Google Scholar

[19] Ma Y J, Du J L, Duan B Y. A method to design the initial equilibrium state of spaceborne cable-net antenna considering the flexibility of supporting trusses (in Chinese). J Mech Eng, 2015, 51: 114-119 CrossRef Google Scholar

[20] Greschik G. Truss beam with tendon diagonals: Mechanics and designs. AIAA J, 2008, 46: 557-567 CrossRef ADS Google Scholar

[21] Ruze J. Antenna tolerance theory—a review. Proc IEEE, 1966, 54: 633-640 CrossRef Google Scholar

[22] Gao F, Dai J S. Research Progress on Theory and Application of Modern Mechanisms (in Chinese). Beijing: Higher Education Press, 2014 [高峰, 戴建生. 现代机构学理论与应用研究进展. 北京: 高等教育出版社, 2014]. Google Scholar

[23] Felton L P, Hofmeister L D. Prestressing in structural synthesis. AIAA J, 1970, 8: 363-364 CrossRef ADS Google Scholar

[24] Levy R. Structural Engineering of Microwave Antennas for Electrical, Mechanical, and Civil Engineers. New York: IEEE Press, 1996. Google Scholar

[25] Woody D P, Schinckel A. Measurement, modeling, and adjustment of the 10.4-m-diameter leighton telescopes. Proc SPIE, 1998, 3357: 474-485 CrossRef Google Scholar

[26] von Hoerner S, Woon-Yin Wong S. Gravitational deformation and astigmatism of tiltable radio telescopes. IEEE Trans Antennas Propagat, 1975, 23: 689-695 CrossRef ADS Google Scholar

  • Figure 1

    Illustration of the antenna structure. (a) Turntable type; (b) wheel-track type.

  • Figure 2

    Illustration of the truss antenna BUS.

  • Figure 3

    Illustration of the cable-truss antenna BUS.

  • Figure 4

    Antenna tipping structure balance schematic.

  • Figure 5

    Illustration of the optimized elevation axis configuration for the antenna structure (1-back up structure, 2-reflector support structure (RSS), 3-countweight, 4-El axis, 5-turnhead, 6-pedestal, 7-centroid of tipping structure).

  • Figure 6

    Illustration of the parallel Az-El two axis alidade structure (1-BUS, 2-RSS, 3-turnhead, 4-pedestal, 5-drive rod, 6-circula track, 7-sliding mechanism).

  • Figure 7

    Illustrates a line chart of θ1 and θ2 with respect to El for Az=0°.

  • Figure 8

    Illustrates a line chart of θ1 and θ2 with respect to Az for El=20°.

  • Figure 9

    Block diagram of modular design of novel antenna structure.

  • Figure 10

    (Color online) BUS of 8 m antenna. (a) 8 m truss antenna BUS; (b) 8 m cable-truss antenna BUS.

  • Figure 11

    (Color online) Design history for the 8 m antenna BUS. (a) 8 m truss antenna; (b) 8 m cable-truss antenna.

  • Figure 12

    (Color online) 26 m antenna in Nanshan of Xinjiang.

  • Figure 13

    (Color online) Positions of 26 m telescope in El=90° and El=0°.

  • Figure 14

    (Color online) Tipping structure of the novel 26 m antenna. (a) BUS; (b) center hub and BUS support structure.

  • Figure 15

    (Color online) Nanshan 26 m antenna gravity deformations in El=90° and El=0°.

  • Figure 16

    (Color online) Novel 26 m antenna gravity deformations in El=90° and El=0°.

  • Figure 17

    (Color online) Surface accuracy versus elevation angle after rigging. (a) Nanshan 26 m; (b) novel 26 m.

  • Figure 18

    (Color online) The relationship between the antenna drive power and azimuth elevation angle.

  • Table 1   Optimization results for 8 m truss antenna

    参数编号

    初始值A0

    优化值A*

    1

    250

    43

    2

    250

    34

    3

    250

    21

    4

    250

    82

    5

    250

    42

    6

    250

    25

    7

    250

    35

    8

    250

    42

    9

    250

    38

    10

    250

    59

    11

    250

    28

    12

    250

    34

    13

    250

    33

  • Table 2   Optimization results for 8 m cable-truss antenna

    参数编号

    索名义长度

    索初始放样长度

    杆件优化前A0

    杆优化后A*

    1

    1307.82

    1307.49

    470

    38

    2

    1682.97

    1682.73

    470

    33

    3

    1107.95

    1107.63

    470

    33

    4

    1678.26

    1677.95

    470

    63

    5

    902.53

    902.37

    470

    51

    6

    1446.57

    1446.45

    470

    33

    7

    1418.84

    1418.54

    470

    42

    8

    1821.22

    1821.07

    470

    57

    9

    2101.46

    2101.35

    470

    52

    11

    1308.36

    1308.20

    12

    1713.18

    1713.05

  • Table 3   Performance index comparisons between 8 m truss antenna and 8 m cable-truss antenna

    参数

    8 m纯杆系天线

    8 m索-桁组合天线

    重量 (kg)

    120.7

    96.1

    表面精度 (mm)

    0.05

    0.048

    最大应力 (MPa)

    14.6(-)

    68.9(+)

    最大位移 (mm)

    1.1

    1.4

    基频 (Hz)

    8.45

    7.26

  • Table 4   Specific design goals for the 26 m antenna structure

    指标名称

    指标值

    主反射面精度

    优于0.2 mm

    工作范围

    方位

    ±270°

    俯仰

    4°89°

    最大旋转速度、加速度

    方位

    1°/s, 0.5°/s2

    俯仰

    0.5°/s, 0.5°/s2

    抗风

    13.4–22 m/s时能工作; 28.4 m/s可以驱动天线复位; 56 m/s在收藏位置不破坏

  • Table 5   Blind pointing accuracy comparisons between novel 26 m and Nanshan 26 m antenna (unit: °)

    南山26 m

    新型26 m

    自重

    0.047

    0.090

    补偿自重后, 13.4 m/s风载荷

    0.024

    0.023

  • Table 6   The maximal stress of novel 26 m antenna component for several case (unit: MPa)

    工况

    驱动连杆

    背架中杆件结构

    背架中索结构

    Az=0, El=90°、风速56 m/s

    13.9

    77.8

    542.1

    Az=0, El=60°、风速22 m/s

    28.6

    87.3

    551.4

    Az=0, El=120°、风速22 m/s

    17.2

    76.5

    555.0

  • Table 7   Component weight comparisons between novel 26 m antenna and Nanshan 26 m antenna (unit: t)

    部件

    南山26 m

    新型26 m

    减重比 (%)

    俯仰转动部分

    背架结构

    33.5

    20.5

    38.1

    面板

    7

    7

    0

    副反射体及其撑腿

    3

    3

    0

    馈源仓

    8.5

    8. 5

    0

    配重

    35

    28

    20.0

    俯仰齿轮

    25

    0

    100

    反射体支撑

    28

    9.3

    66.8

    小计1

    140

    75.3

    46.2

    方位转动部分

    方位架/转台

    180

    8.3

    95.3

    驱动连杆

    3.8

    小计2

    180

    12.1

    77.3

    非可动部分

    基座

    28.7

    轮轨

    10.8

    35

    –224

    小计3

    10.8

    63.7

    –489

    总重

    330.8

    151.1

    54.3