logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 51 , Issue 2 : 029501(2021) https://doi.org/10.1360/SSPMA-2020-0005

Mars orientation parameters determination based ondirect-to-Earth measurement

More info
  • ReceivedJan 13, 2020
  • AcceptedApr 23, 2020
  • PublishedOct 16, 2020
PACS numbers

Abstract


Funded by

国家自然科学基金(U1831132,41374024)

国家自然科学基金青年科学基金(41804025)

湖北省自然基金重点项目(2015CFA011,2018CFA087)

澳门科技大学月球与行星科学实验室开放课题(FDCT,119/2017/A3)

国家留学基金(CSC)


Acknowledgment

感谢美国宇航局与欧空局提供的历表与模型, 感谢Marie Yseboodt博士提出的宝贵意见.


References

[1] Le Maistre S, Rosenblatt P, Rivoldini A, et al. Lander radio science experiment with a direct link between Mars and the Earth. Planet Space Sci, 2012, 68: 105-122 CrossRef ADS Google Scholar

[2] Dehant V, Folkner W, Renotte E, et al. Lander radioscience for obtaining the rotation and orientation of Mars. Planet Space Sci, 2009, 57: 1050-1067 CrossRef ADS Google Scholar

[3] Dehant V, Le Maistre S, Rivoldini A, et al. Revealing Mars’ deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth. Planet Space Sci, 2011, 59: 1069-1081 CrossRef ADS Google Scholar

[4] Yseboodt M, Barriot J P, Dehant V. Analytical modeling of the Doppler tracking between a lander and a Mars orbiter in terms of rotational dynamics. J Geophys Res, 2003, 108: 5076 CrossRef ADS Google Scholar

[5] Le Maistre S, Rosenblatt P, Dehant V, et al. Mars rotation determination from a moving rover using Doppler tracking data: What could be done?. Planet Space Sci, 2018, 159: 17-27 CrossRef ADS Google Scholar

[6] Borderies N, Balmino G, Castel L, et al. Study of Mars dynamics from lander tracking data analysis. Moon Planets, 1980, 22: 191-200 CrossRef ADS Google Scholar

[7] Yoder C F, Standish E M. Martian precession and rotation from Viking lander range data. J Geophys Res, 1997, 102: 4065-4080 CrossRef ADS Google Scholar

[8] Folkner W M, Yoder C F, Yuan D N, et al. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science, 1997, 278: 1749-1752 CrossRef PubMed ADS Google Scholar

[9] Le Maistre S. The rotation of Mars and Phobos from Earth-based Radio-Tracking Observations of a Lander. Dissertation for Doctoral Degree. Brussels: Université Catholique de Louvain, 2013. Google Scholar

[10] Kuchynka P, Folkner W M, Konopliv A S, et al. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus, 2014, 229: 340-347 CrossRef ADS Google Scholar

[11] Folkner W M, Dehant V, Le Maistre S, et al. The rotation and interior structure experiment on the InSight mission to Mars. Space Sci Rev, 2018, 214: 100 CrossRef ADS Google Scholar

[12] Reasenberg R D, King R W. The rotation of Mars. J Geophys Res, 1979, 84: 6231-6240 CrossRef ADS Google Scholar

[13] Konopliv A S, Yoder C F, Standish E M, et al. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus, 2006, 182: 23-50 CrossRef ADS Google Scholar

[14] Van Hoolst T, Dehant V, Defraigne P. Chandler wobble and free core nutation for Mars. Planet Space Sci, 2000, 48: 1145-1151 CrossRef Google Scholar

[15] Jacobson R A, Konopliv A S, Park R S, et al. The rotational elements of Mars and its satellites. Planet Space Sci, 2018, 152: 107-115 CrossRef ADS Google Scholar

[16] Huang Y, Chang S, Li P, et al. Orbit determination of Chang’E-3 and positioning of the lander and the rover. Chin Sci Bull, 2014, 59: 3858-3867 CrossRef ADS Google Scholar

[17] Cao J F, Zhang Y, Hu S J, et al. An analysis of precise positioning and accuracy of the CE-3 lunarlander soft landing (in Chinese). Geomatics Inf Sci Wuhan Univ, 2016, 41: 274–278 [曹建峰, 张宇, 胡松杰, 等. 嫦娥三号着陆器精确定位与精度分析. 武汉大学学报(信息科学版), 2016, 41: 274–278]. Google Scholar

[18] Cao J F, Huang Y, Hu X G, et al. Modeling and application of Doppler data in deep space exploration (in Chinese). J Astron, 2011, 32: 1583–1589 [曹建峰, 黄勇, 胡小工, 等. 深空探测中多普勒的建模与应用. 宇航学报, 2011, 32: 1583–1589]. Google Scholar

[19] Yang X, Yan J G, Ye M, et al. Development of precise orbit determination software for Mars probe and data processing for MEX (in Chinese). Geomatics Inf Sci Wuhan Univ, 2019, 44: 385–391 [杨轩, 鄢建国, 叶茂, 等. 火星探测器精密定轨软件研制及实测数据处理. 武汉大学学报(信息科学版), 2019, 44: 385–391]. Google Scholar

[20] Iess L, Asmar S, Tortora P. MORE: An advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astronaut, 2009, 65: 666-675 CrossRef ADS Google Scholar

[21] Estefan J A, Thurman S W, Batchelder J A. Earth-based ranging measurements to a Planetary Radio Beacon: An approximate analytic formulation. TDA Progress Report, 1990. 42–103. Google Scholar

[22] Folkner W M, Kahn R D, Preston R A, et al. Mars dynamics from Earth-based tracking of the Mars Pathfinder lander. J Geophys Res, 1997, 102: 4057-4064 CrossRef ADS Google Scholar

[23] Yseboodt M, Dehant V, Péters M J. Signatures of the Martian rotation parameters in the Doppler and range observables. Planet Space Sci, 2017, 144: 74-88 CrossRef ADS arXiv Google Scholar

[24] Le Maistre S. InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model. Planet Space Sci, 2016, 121: 1-9 CrossRef Google Scholar

[25] Defraigne P, de Viron O, Dehant V, et al. Mars rotation variations induced by atmosphere and ice caps. J Geophys Res, 2000, 105: 24563-24570 CrossRef ADS Google Scholar

[26] Van den Acker E. Influence of the seasonal winds and the CO2 mass exchange between atmosphere and polar caps on Mars’ rotation. J Geophys Res, 2002, 107: 9 CrossRef ADS Google Scholar

[27] Folkner W M, Williams J G, Boggs D H, et al. The planetary and lunar ephemerides DE430 and DE431. Interplanet Network Prog Rep, 2014, 196: 1–81. Google Scholar

  • Figure 1

    (Color online) Two-way or three-way tracking mode for Mars lander.

  • Figure 2

    (Color online) Earth declination and SEP variations versus time.

  • Figure 3

    (Color online) Lander positioning versus tracking duration (the solid line is the uncertainty of adjusted parameters and the red circle is the true error). The convergence curves for the lander positioning at X (a), Y (b), and Z (c) axes using two-way Doppler data; the convergence curves for the lander positioning at X (d), Y (e), and Z (f) axes using two-way range data.

  • Figure 4

    (Color online) Precession and spin rate parameters versus tracking duration. The solid line is the uncertainty of adjusted parameters and the red circle is the true error. The dashed line represents current precision of these parameters computed from lander tracking data. The convergence curves for the precession and rotation parameters I0˙ (a), ψ0˙ (b), ϕ0˙ (c) using two-way Doppler data. The convergence curves for the precession and rotation parameters I0˙ (d), ψ0˙ (e), ϕ0˙ (f) using two-way range data.

  • Figure 5

    (Color online) Nutation parameters versus tracking duration. All lines in the figure are uncertainties of adjusting parameters. For avoiding confusion, the nutation parameters with little improvement in accuracy are not drawn. The true errors of all parameters are less than 2σ. (a) The result of using two-way Doppler data to determine nutation parameters; (b) the result of using two-way range data.

  • Figure 6

    (Color online) LOD parameters versus tracking duration. (a) The result of using two-way Doppler data to determine LOD parameters; (b) the result of using two-way range data.

  • Figure 7

    (Color online) Polar motion parameters versus tracking duration (only Chandler Wobble). (a) The result of using two-way Doppler data to determine the Chandler Wobble; (b) the result of using two-way range data.

  • Figure 8

    (Color online) The effect of lander latitude on the accuracy of Mars orientation parameters (for clarity, only representative orientation parameters are drawn). (a), (b) Simulation results using two-way Doppler measurement; (c), (d) combined solution results of two-way Doppler and two-way range.

  • Figure 9

    (Color online) The effect of Mars ephemeris error on the accuracy of Mars orientation parameters (for clarity, only representative orientation parameters are drawn). (a) The case of using two-way Doppler data; (b) the case of using two-way range data.

  • Table 1   Simulation settings

    符号

    数值

    先验约束

    X (km)

    2444.742

    10

    Y (km)

    −2051.382

    10

    Z (km)

    1161.568

    10

    ψ0˙ (mas/yr)

    −7610.1

    I0˙ (mas/yr)

    −3.4

    ϕ0˙ (degree/d)

    350.891985307

    ϕc1, ϕs1 (mas)

    481, −155

    20, 24

    ϕc2, ϕs2 (mas)

    −103, −93

    18, 16

    ϕc3, ϕs3 (mas)

    −35, −3

    16, 14

    ϕc4, ϕs4 (mas)

    −10, −8

    12, 12

    I10, ψ10 (mas)

    −0.4, −632.6

    24, 19

    I20, ψ20 (mas)

    0, −44.2

    5, 8

    I30, ψ30 (mas)

    0, −4.0

    40, 96

    I40, ψ40 (mas)

    −49.1, −104.5

    3, 7

    I50, ψ50 (mas)

    515.7, 1097.0

    35, 139

    I60, ψ60 (mas)

    112.8, 240.1

    268, 569

    I70, ψ70 (mas)

    19.2, 40.9

    3, 3.9

    I80, ψ80 (mas)

    3.0, 6.5

    0.5, 0.85

    I90, ψ90 (mas)

    0.4, 1.0

    0.06, 0.17

    Xc1, Xs1 (mas)

    13, 13

    13, 13

    Xc2, Xs2 (mas)

    8, 8

    8, 8

    Xc4, Xs4 (mas)

    2, 2

    2, 2

    Xc5, Xs5 (mas)

    55, 55

    55, 55

    Yc1, Ys1 (mas)

    5, 5

    5, 5

    Yc2, Ys2 (mas)

    8, 8

    8, 8

    Yc4, Ys4 (mas)

    2, 2

    2, 2

    Yc5, Ys5 (mas)

    34, 34

    34, 34

  • Table 2   Accuracy of lander position and MOPs

    符号

    双程多普勒 (1σ)

    双程测距 (1σ)

    符号

    双程多普勒 (1σ)

    双程测距 (1σ)

    X (m)

    0.35

    0.43

    I50, ψ50 (mas)

    14.47, 33.01

    9.50, 18.42

    Y (m)

    0.41

    0.52

    I60, ψ60 (mas)

    20.06, 43.82

    13.39, 27.90

    Z (m)

    5.93

    0.06

    I70, ψ70 (mas)

    2.29, 3.51

    2.14, 2.95

    ψ0˙ (mas/yr)

    0.75

    0.35

    I80, ψ80 (mas)

    0.49, 0.84

    0.48, 0.83

    I0˙ (mas/yr)

    0.90

    0.63

    I90, ψ90 (mas)

    0.06, 0.17

    0.06, 0.17

    ϕ0˙ (deg/d)

    0.0000000011

    0.0000000014

    Xc1, Xs1 (mas)

    7.54, 5.29

    6.55, 5.01

    ϕc1, ϕs1 (mas)

    3.52, 2.97

    3.22, 2.85

    Xc2, Xs2 (mas)

    5.97, 6.12

    5.49, 5.70

    ϕc2, ϕs2 (mas)

    4.80, 4.79

    3.82, 4.07

    Xc4, Xs4 (mas)

    1.62, 1.81

    1.62, 1.65

    ϕc3, ϕs3 (mas)

    6.25, 3.33

    4.48, 2.36

    Xc5, Xs5 (mas)

    3.47, 1.76

    4.74, 2.23

    ϕc4, ϕs4 (mas)

    1.33, 1.12

    1.48, 1.30

    Yc1, Ys1 (mas)

    4.80, 4.75

    4.78, 4.75

    I10, ψ10 (mas)

    9.01, 15.94

    7.31, 8.46

    Yc2, Ys2 (mas)

    6.55, 6.73

    6.30, 6.45

    I20, ψ20 (mas)

    4.41, 7.45

    4.25, 7.18

    Yc4, Ys4 (mas)

    1.74, 1.86

    1.74, 1.76

    I30, ψ30 (mas)

    20.67, 45.05

    13.23, 29.53

    Yc5, Ys5 (mas)

    4.63, 3.21

    5.87, 3.55

    I40, ψ40 (mas)

    2.97, 6.84

    2.93, 6.60

     
qqqq

Contact and support