logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 9 : 1524(2021) https://doi.org/10.1360/SSI-2021-0003

Multi-carrier modulation scheme based on prolate spheroidal wave functions with generalized index modulation

More info
  • ReceivedJan 6, 2021
  • AcceptedMay 6, 2021
  • PublishedSep 14, 2021

Abstract


Funded by

国家自然科学基金(61701518)

山东省“泰山学者"建设工程专项经费(ts20081130)


References

[1] Zhang W, Wang C X, Ge X. Enhanced 5G Cognitive Radio Networks Based on Spectrum Sharing and Spectrum Aggregation. IEEE Trans Commun, 2018, 66: 6304-6316 CrossRef Google Scholar

[2] Zhang L, Liang Y C, Xiao M. Spectrum Sharing for Internet of Things: A Survey. IEEE Wireless Commun, 2019, 26: 132-139 CrossRef Google Scholar

[3] Hou Z, She C, Li Y. Prediction and Communication Co-Design for Ultra-Reliable and Low-Latency Communications. IEEE Trans Wireless Commun, 2020, 19: 1196-1209 CrossRef Google Scholar

[4] Guan P, Wu D, Tian T. 5G Field Trials: OFDM-Based Waveforms and Mixed Numerologies. IEEE J Sel Areas Commun, 2017, 35: 1234-1243 CrossRef Google Scholar

[5] Zhang L, Ijaz A, Xiao P. Filtered OFDM Systems, Algorithms, and Performance Analysis for 5G and Beyond. IEEE Trans Commun, 2018, 66: 1205-1218 CrossRef Google Scholar

[6] VAKILIAN V, WILD T, SCHAICH F, et al. Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), Atlanta, 2013. 9--13. Google Scholar

[7] Nissel R, Schwarz S, Rupp M. Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications. IEEE J Sel Areas Commun, 2017, 35: 1768-1782 CrossRef Google Scholar

[8] Michailow N, Matthe M, Gaspar I S. Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks. IEEE Trans Commun, 2014, 62: 3045-3061 CrossRef Google Scholar

[9] WANG H X, LU F P, LIU C H, et al. Frequency domain multi-carrier modulation based on prolate spheroidal wave functions. IEEE ACCESS, 2020, 8, 99665-99680. Google Scholar

[10] LU F P, WANG H X, LIU C H, et al. PSWFs frequency domain modulation and demodulation method. Journal of Electronics & Information Technology, 2020, 42, 1888-1895. Google Scholar

[11] WANG H X, LU F P, LIU C H, et al. Strict Parity Symmetric PSWFs signal construction and low complexity detection method. Sci Sin Inform, 2019, 5: 766-776. Google Scholar

[12] Li Q, Wen M, Clerckx B. Subcarrier Index Modulation for Future Wireless Networks: Principles, Applications, and Challenges. IEEE Wireless Commun, 2020, 27: 118-125 CrossRef Google Scholar

[13] Dang S, Guo S, Coon J P. Enhanced Huffman Coded OFDM With Index Modulation. IEEE Trans Wireless Commun, 2020, 19: 2489-2503 CrossRef Google Scholar

[14] Li Q, Wen M, Basar E. Index Modulated OFDM Spread Spectrum. IEEE Trans Wireless Commun, 2018, 17: 2360-2374 CrossRef Google Scholar

[15] Mazo J E. Faster-Than-Nyquist Signaling. Bell Syst Technical J, 1975, 54: 1451-1462 CrossRef Google Scholar

[16] Li D. Overlapped Multiplexing Principle and an Improved Capacity on Additive White Gaussian Noise Channel. IEEE Access, 2018, 6: 6840-6848 CrossRef Google Scholar

[17] Wang H, Wang Y, Hu Y. Bidirectional Viterbi decoding algorithm for OvTDM. China Commun, 2020, 17: 183-192 CrossRef Google Scholar

[18] Wen M, Zheng B, Kim K J. A Survey on Spatial Modulation in Emerging Wireless Systems: Research Progresses and Applications. IEEE J Sel Areas Commun, 2019, 37: 1949-1972 CrossRef Google Scholar

[19] Basar E, Wen M, Mesleh R. Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access, 2017, 5: 16693-16746 CrossRef Google Scholar

[20] WANG H X, LU F P, LIU C H, et al. Multi-carrier modulation scheme based on prolate spheroidal wave functions with signal grouping optimization. Sci Sin Inform, 2020. Google Scholar

[21] Fan R, Yu Y J, Guan Y L. Generalization of Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Trans Wireless Commun, 2015, 14: 5350-5359 CrossRef Google Scholar

[22] Fan R, Yu Y J, Guan Y L. Improved orthogonal frequency division multiplexing with generalised index modulation. IET Commun, 2016, 10: 969-974 CrossRef Google Scholar

[23] Qing H, Yu H, Wen M. A novel detector based on EM algorithm for multiple-mode OFDM with index modulation. J Wireless Com Network, 2020, 2020(1): 60 CrossRef Google Scholar

[24] Wen M, Basar E, Li Q. Multiple-Mode Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Trans Commun, 2017, 65: 3892-3906 CrossRef Google Scholar

[25] Yarkin F, Coon J P. IEEE Wireless Commun Lett, 2020, 9: 1110-1114 CrossRef Google Scholar

[26] Li J, Dang S, Wen M. Layered Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Syst J, 2019, 13: 3793-3802 CrossRef ADS Google Scholar

[27] LU F P, LIU C H and KANG J F. Index modulation signal detection method based on order statistic. Radio communication technology, 2019, 45: 61-65. Google Scholar

[28] Li J, Li Q, Dang S. Low-Complexity Detection for Index Modulation Multiple Access. IEEE Wireless Commun Lett, 2020, : 1-1 CrossRef Google Scholar

[29] Zheng B, Wen M, Basar E. Multiple-Input Multiple-Output OFDM With Index Modulation: Low-Complexity Detector Design. IEEE Trans Signal Process, 2017, 65: 2758-2772 CrossRef ADS Google Scholar

[30] Guo S, Zhang H, Zhang P. Signal Shaping for Generalized Spatial Modulation and Generalized Quadrature Spatial Modulation. IEEE Trans Wireless Commun, 2019, 18: 4047-4059 CrossRef Google Scholar

[31] Guo S, Zhang H, Zhang P. Signal Shaping for Non-Uniform Beamspace Modulated mmWave Hybrid MIMO Communications. IEEE Trans Wireless Commun, 2020, 19: 6660-6674 CrossRef Google Scholar

  • Figure 1

    Block diagram of the MCM-PSWFs-GIM with (a) transmitter (b) receiver

  • Figure 2

    (Color online) Ratio of modulation signals average power

  • Figure 3

    Fundamental of MCM-PSWFs-GIM-LO and PDF of MCM-PSWFs-GIM modulated symbol

  • Figure 4

    BER performance with (a) MCOM-PSWFs and OFDM-GIM, (b) MCM-PSWFs-SGO, (c) OFDM-GIM, protectłinebreak (d) OFDM-QAM/PSK

  • Table 1   The SE of different MCM schemes
    Modulation method $g$ $n$ $k$ SE (bit/s/Hz) $E_{b}/N_{0}$ (dB) $\rho$ (%)
    OFDM-GIM-2PAM [21,22] 24 4 1, 2, 3 2.77 13.82 2.9
    MCOM-PSWFs-4QAM [9] 1 92 92 1.90 9.60 50.0
    11 8 4 2.27 9.65 25.6
    MCM-PSWFs-SGO-2PAM [20] 9 10 7 2.41 11.05 18.3
    5 16 6 1.86 9.25 87.0
    The proposed method 23 4 1, 2, 3 2.85 11.90
  • Table 2   Computational complexity of different signal index detection schemes
    Index detection method Multiplications $n$ $k$ $E_{b}/N_{0}$ (dB) $B$ = 1.44 MHz
    OFDM-GIM-LLR [21]$O\left(~{Mmgn}~\right)$4 1, 2, 3 576
    8 3, 5 384
    MCM-PSWFs-SGO-OS [20] $O\left(~{gn{{\log~}_2}n}~\right)$ 8 4 300
    MCM-PSWFs-GIM-ML$O\left(~{gM^{n}}~\right)$4 1, 2, 3 1472
    8 3, 5 22528
    MCM-PSWFs-GIM-LO $O\left(~{gn}~\right)$4 1, 2, 3 11.9 97
    (The proposed method) 8 3, 5 10.0 102
qqqq

Contact and support