SCIENTIA SINICA Informationis, Volume 51 , Issue 3 : 505(2021) https://doi.org/10.1360/SSI-2020-0404

Design and implementation of CMOS millimeter-wave ICs and 4096 TX/4096 RX very-large-scale integrated phased-array antenna

More info
  • ReceivedDec 31, 2020
  • AcceptedJan 27, 2021
  • PublishedFeb 24, 2021


Funded by



感谢深南电路股份有限公司在 PCB 加工制造和验证等方面的大力支持.


[1] Roh W, Seol J Y, Park J. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106-113 CrossRef Google Scholar

[2] Aryanfar F, Pi J, Zhou H, et al. Millimeter-wave base station for mobile broadband communication. In: Proceedings of IEEE MTT-S International Microwave Symposium, 2015. 1--3. Google Scholar

[3] Von Aulock W. Properties of Phased Arrays. Proc IRE, 1960, 48: 1715-1727 CrossRef Google Scholar

[4] Parker D, Zimmermann D C. Phased arrays - part 1: theory and architectures. IEEE Trans Microwave Theor Techn, 2002, 50: 678-687 CrossRef ADS Google Scholar

[5] Parker D, Zimmermann D C. Phased arrays-part II: implementations, applications, and future trends. IEEE Trans Microwave Theor Techn, 2002, 50: 688-698 CrossRef ADS Google Scholar

[6] Hashemi H, Guan X, Hajimiri A. A fully integrated 24 GHz 8-path phased-array receiver in silicon. In: Proceedings of IEEE International Solid-State Circuits Conference, 2004. 390--534. Google Scholar

[7] Natarjan A, Komijani A, Guan X, et al. A 77GHz phased-array transmitter with local LO path phase-shifting in silicon. In: Proceedings of IEEE International Solid State Circuits Conference — Digest of Technical Papers, 2006. 639--648. Google Scholar

[8] Kibaroglu K, Sayginer M, Phelps T. A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8-12-Gb/s 5G Link at 300 Meters Without Any Calibration. IEEE Trans Microwave Theor Techn, 2018, 66: 5796-5811 CrossRef ADS Google Scholar

[9] Rupakula B, Zihir S, Rebeiz G M. Low Complexity 54-63-GHz Transmit/Receive 64- and 128-element 2-D-Scanning Phased-Arrays on Multilayer Organic Substrates With 64-QAM 30-Gbps Data Rates. IEEE Trans Microwave Theor Techn, 2019, 67: 5268-5281 CrossRef ADS Google Scholar

[10] Aljuhani A H, Traffenstedt E, Kanar T, et al. Ultra-low cost ku-band dual-polarized transmit and receive phased-arrays for SATCOM and point-to-point applications with bandwidths up to 750 MHz. In: Proceedings of IEEE International Symposium on Phased Array System and Technology (PAST), 2019. 8138--8143. Google Scholar

[11] International Technology Roadmap for Semiconductors (ITRS) 2.0 [Online]. Available: https://www.semiconductors.org/wp-content/uploads/2018/06/$0\_2$015-ITRS-2.0-Executive Report-1.pdf. Google Scholar

[12] International Roadmap for Device And System (IRDS) 2020 [Online]. Available: https://irds.ieee.org/editions/2020. Google Scholar

[13] Voinigescu S P, Shopov S, Bateman J. Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon. Proc IEEE, 2017, 105: 1087-1104 CrossRef Google Scholar

[14] Park H-C, Kang D, Lee S M, et al. A 39GHz band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 75--77. Google Scholar

[15] Schroter M, Rosenbaum T, Chevalier P. SiGe HBT Technology: Future Trends and TCAD-Based Roadmap. Proc IEEE, 2017, 105: 1068-1086 CrossRef Google Scholar

[16] Ferrari A C, Bonaccorso F, Fal'ko V. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7: 4598-4810 CrossRef ADS Google Scholar

[17] Long J R. SiGe Radio Frequency ICs for Low-Power Portable Communication. Proc IEEE, 2005, 93: 1598-1623 CrossRef Google Scholar

[18] Johnson E O. Physical limitations on frequency and power parameters of transistors. In: Proceedings of IRE International Convention Record, 1965. 163--177. Google Scholar

[19] Zhao D, Reynaert P. An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS. IEEE Trans Microwave Theor Techn, 2015, 63: 683-690 CrossRef ADS Google Scholar

[20] Zhang J, Zhao D, You X. A 20-GHz 1.9-mW LNA Using g m-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications. IEEE J Solid-State Circuits, 2020, 55: 2714-2723 CrossRef ADS Google Scholar

[21] Zhao D, Reynaert P. A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS. IEEE J Solid-State Circuits, 2013, 48: 2323-2337 CrossRef ADS Google Scholar

[22] P. Gu, D. Zhao, X. You. Analysis and Design of a CMOS Bidirectional Passive Vector-Modulated Phase Shifter. IEEE Trans. Circuits Syst. I, Reg. Papers, 2021, 68. Google Scholar

[23] Gu P, Zhao D, You X. A DC-50 GHz CMOS Switched-Type Attenuator With Capacitive Compensation Technique. IEEE Trans Circuits Syst I, 2020, 67: 3389-3399 CrossRef Google Scholar

[24] Peng N, Zhao D. Ku-band compact Wilkinson power divider based on multi-tap inductor technique in 65-nm CMOS. IEICE Electron Express, 2018, 15: 20180973-20180973 CrossRef Google Scholar

[25] Jeong J, Uhm M, Jang D, et al. A Ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications. In: Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), 2019. 1--4. Google Scholar

[26] Bao K, Zhou J, Wang L, et al. A 29-30GHz 64-element active phased array for 5G application. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS), 2018. 492--495. Google Scholar

[27] Nakagawa J, Nakatani K, Nakamizo H, et al. 28GHz active phased array antenna employing GaAs frontend module for massive MIMO in 5G. In: Proceedings of 2019 12th Global Symposium on Millimeter Waves (GSMM), 2019. 4--6. Google Scholar

[28] Mahmoudidaryan P, Medi A. Codesign of Ka-Band Integrated Limiter and Low Noise Amplifier. IEEE Trans Microwave Theor Techn, 2016, 64: 2843-2852 CrossRef ADS Google Scholar

[29] Luo X, Ouyang J, Chen Z H. A Scalable Ka-Band 1024-Element Transmit Dual-Circularly-Polarized Planar Phased Array for SATCOM Application. IEEE Access, 2020, 8: 156084-156095 CrossRef Google Scholar

  • Table 1   Ka-band phased-array transmitter and receiver measurement results
    TX performanceRX performance
    Parameter Value Parameter Value
    Frequency 27.5$\sim$31.0 GHz Frequency 17.7$\sim$21.2 GHz
    Number of elements 8 Number of elements 8
    OP$_{\rm~1~dB}$ 11 dBm NF 3.0 dB
    PAE@OP$_{\rm~1~dB}$ 15% DC power 30 mW/channel
    Gain/phase control 6 bit Gain/phase control 6 bit
    Gain control range/step 31.5 dB/0.5 dB Gain control range/step 31.5 dB/0.5 dB
    Phase control range/step 360$^{\circ}$/5.625$^{\circ}$ Phase control range/step 360$^{\circ}$/5.625$^{\circ}$
    RMS gain error 0.54 dB RMS gain error 0.21 dB
    RMS phase error 1.78$^{\circ}$ RMS phase error 1.12$^{\circ}$
    Package WLCSP Package WLCSP
  • Table 2   Ka-band 4096 TX/4096 RX integrated phased-array measurement results
    Parameter Value Parameter Value
    Frequency (TX) 27.5$\sim$31.0 GHz Side lope level $\leqslant~-$13 dB@90$^{\circ}$
    Frequency (RX) 17.7$\sim$21.2 GHz Polarization LHCP/RHCP
    E-/H-plane scan0$\sim$360$^{\circ}$, 30$^{\circ}$$\sim$90$^{\circ}$ Axial ratioRX: $\leqslant$1 dB@90$^{\circ}$
    Number of elements 4096 TX/4096 RX TX: $\leqslant$1 dB@90$^{\circ}$
    EIRP$\geqslant$52 dBW@90$^{\circ}$ BeamwidthRX: 1.7$^{\circ}$@90$^{\circ}$
    $\geqslant$47.5 dBW@30$^{\circ}$ TX: 1.7$^{\circ}$@90$^{\circ}$
    G/T$\geqslant$11.5 dB/K@90$^{\circ}$ RX/TX isolationtextgreater 105 dB
    $\geqslant$7.5 dB/K@30$^{\circ}$