国家重点研发计划(2019YFB1803000)
感谢深南电路股份有限公司在 PCB 加工制造和验证等方面的大力支持.
[1] Roh W, Seol J Y, Park J. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106-113 CrossRef Google Scholar
[2] Aryanfar F, Pi J, Zhou H, et al. Millimeter-wave base station for mobile broadband communication. In: Proceedings of IEEE MTT-S International Microwave Symposium, 2015. 1--3. Google Scholar
[3] Von Aulock W. Properties of Phased Arrays. Proc IRE, 1960, 48: 1715-1727 CrossRef Google Scholar
[4] Parker D, Zimmermann D C. Phased arrays - part 1: theory and architectures. IEEE Trans Microwave Theor Techn, 2002, 50: 678-687 CrossRef ADS Google Scholar
[5] Parker D, Zimmermann D C. Phased arrays-part II: implementations, applications, and future trends. IEEE Trans Microwave Theor Techn, 2002, 50: 688-698 CrossRef ADS Google Scholar
[6] Hashemi H, Guan X, Hajimiri A. A fully integrated 24 GHz 8-path phased-array receiver in silicon. In: Proceedings of IEEE International Solid-State Circuits Conference, 2004. 390--534. Google Scholar
[7] Natarjan A, Komijani A, Guan X, et al. A 77GHz phased-array transmitter with local LO path phase-shifting in silicon. In: Proceedings of IEEE International Solid State Circuits Conference — Digest of Technical Papers, 2006. 639--648. Google Scholar
[8] Kibaroglu K, Sayginer M, Phelps T. A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8-12-Gb/s 5G Link at 300 Meters Without Any Calibration. IEEE Trans Microwave Theor Techn, 2018, 66: 5796-5811 CrossRef ADS Google Scholar
[9] Rupakula B, Zihir S, Rebeiz G M. Low Complexity 54-63-GHz Transmit/Receive 64- and 128-element 2-D-Scanning Phased-Arrays on Multilayer Organic Substrates With 64-QAM 30-Gbps Data Rates. IEEE Trans Microwave Theor Techn, 2019, 67: 5268-5281 CrossRef ADS Google Scholar
[10] Aljuhani A H, Traffenstedt E, Kanar T, et al. Ultra-low cost ku-band dual-polarized transmit and receive phased-arrays for SATCOM and point-to-point applications with bandwidths up to 750 MHz. In: Proceedings of IEEE International Symposium on Phased Array System and Technology (PAST), 2019. 8138--8143. Google Scholar
[11] International Technology Roadmap for Semiconductors (ITRS) 2.0 [Online]. Available: https://www.semiconductors.org/wp-content/uploads/2018/06/$0\_2$015-ITRS-2.0-Executive Report-1.pdf. Google Scholar
[12] International Roadmap for Device And System (IRDS) 2020 [Online]. Available: https://irds.ieee.org/editions/2020. Google Scholar
[13] Voinigescu S P, Shopov S, Bateman J. Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon. Proc IEEE, 2017, 105: 1087-1104 CrossRef Google Scholar
[14] Park H-C, Kang D, Lee S M, et al. A 39GHz band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 75--77. Google Scholar
[15] Schroter M, Rosenbaum T, Chevalier P. SiGe HBT Technology: Future Trends and TCAD-Based Roadmap. Proc IEEE, 2017, 105: 1068-1086 CrossRef Google Scholar
[16] Ferrari A C, Bonaccorso F, Fal'ko V. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7: 4598-4810 CrossRef ADS Google Scholar
[17] Long J R. SiGe Radio Frequency ICs for Low-Power Portable Communication. Proc IEEE, 2005, 93: 1598-1623 CrossRef Google Scholar
[18] Johnson E O. Physical limitations on frequency and power parameters of transistors. In: Proceedings of IRE International Convention Record, 1965. 163--177. Google Scholar
[19] Zhao D, Reynaert P. An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS. IEEE Trans Microwave Theor Techn, 2015, 63: 683-690 CrossRef ADS Google Scholar
[20] Zhang J, Zhao D, You X. A 20-GHz 1.9-mW LNA Using g m-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications. IEEE J Solid-State Circuits, 2020, 55: 2714-2723 CrossRef ADS Google Scholar
[21] Zhao D, Reynaert P. A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS. IEEE J Solid-State Circuits, 2013, 48: 2323-2337 CrossRef ADS Google Scholar
[22] P. Gu, D. Zhao, X. You. Analysis and Design of a CMOS Bidirectional Passive Vector-Modulated Phase Shifter. IEEE Trans. Circuits Syst. I, Reg. Papers, 2021, 68. Google Scholar
[23] Gu P, Zhao D, You X. A DC-50 GHz CMOS Switched-Type Attenuator With Capacitive Compensation Technique. IEEE Trans Circuits Syst I, 2020, 67: 3389-3399 CrossRef Google Scholar
[24] Peng N, Zhao D. Ku-band compact Wilkinson power divider based on multi-tap inductor technique in 65-nm CMOS. IEICE Electron Express, 2018, 15: 20180973-20180973 CrossRef Google Scholar
[25] Jeong J, Uhm M, Jang D, et al. A Ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications. In: Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), 2019. 1--4. Google Scholar
[26] Bao K, Zhou J, Wang L, et al. A 29-30GHz 64-element active phased array for 5G application. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS), 2018. 492--495. Google Scholar
[27] Nakagawa J, Nakatani K, Nakamizo H, et al. 28GHz active phased array antenna employing GaAs frontend module for massive MIMO in 5G. In: Proceedings of 2019 12th Global Symposium on Millimeter Waves (GSMM), 2019. 4--6. Google Scholar
[28] Mahmoudidaryan P, Medi A. Codesign of Ka-Band Integrated Limiter and Low Noise Amplifier. IEEE Trans Microwave Theor Techn, 2016, 64: 2843-2852 CrossRef ADS Google Scholar
[29] Luo X, Ouyang J, Chen Z H. A Scalable Ka-Band 1024-Element Transmit Dual-Circularly-Polarized Planar Phased Array for SATCOM Application. IEEE Access, 2020, 8: 156084-156095 CrossRef Google Scholar
TX performance | RX performance | ||
Parameter | Value | Parameter | Value |
Frequency | 27.5$\sim$31.0 GHz | Frequency | 17.7$\sim$21.2 GHz |
Number of elements | 8 | Number of elements | 8 |
OP$_{\rm~1~dB}$ | 11 dBm | NF | 3.0 dB |
PAE@OP$_{\rm~1~dB}$ | 15% | DC power | 30 mW/channel |
Gain/phase control | 6 bit | Gain/phase control | 6 bit |
Gain control range/step | 31.5 dB/0.5 dB | Gain control range/step | 31.5 dB/0.5 dB |
Phase control range/step | 360$^{\circ}$/5.625$^{\circ}$ | Phase control range/step | 360$^{\circ}$/5.625$^{\circ}$ |
RMS gain error | 0.54 dB | RMS gain error | 0.21 dB |
RMS phase error | 1.78$^{\circ}$ | RMS phase error | 1.12$^{\circ}$ |
Package | WLCSP | Package | WLCSP |
Parameter | Value | Parameter | Value |
Frequency (TX) | 27.5$\sim$31.0 GHz | Side lope level | $\leqslant~-$13 dB@90$^{\circ}$ |
Frequency (RX) | 17.7$\sim$21.2 GHz | Polarization | LHCP/RHCP |
E-/H-plane scan | 0$\sim$360$^{\circ}$, 30$^{\circ}$$\sim$90$^{\circ}$ | Axial ratio | RX: $\leqslant$1 dB@90$^{\circ}$ |
Number of elements | 4096 TX/4096 RX | TX: $\leqslant$1 dB@90$^{\circ}$ | |
EIRP | $\geqslant$52 dBW@90$^{\circ}$ | Beamwidth | RX: 1.7$^{\circ}$@90$^{\circ}$ |
$\geqslant$47.5 dBW@30$^{\circ}$ | TX: 1.7$^{\circ}$@90$^{\circ}$ | ||
G/T | $\geqslant$11.5 dB/K@90$^{\circ}$ | RX/TX isolation | textgreater 105 dB |
$\geqslant$7.5 dB/K@30$^{\circ}$ |