logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 9 : 1507(2021) https://doi.org/10.1360/SSI-2020-0397

Secure physical layer short-packet communication for 5G

More info
  • ReceivedDec 23, 2020
  • AcceptedApr 8, 2021
  • PublishedSep 14, 2021

Abstract


Funded by

国家自然科学基金(61941118)

国家重点研发计划(2019YFE0113200)

陕西省科技创新团队(2019TD-013)


References

[1] Ji H, Park S, Yeo J. Ultra-Reliable and Low-Latency Communications in 5G Downlink: Physical Layer Aspects. IEEE Wireless Commun, 2018, 25: 124-130 CrossRef Google Scholar

[2] You X, Wang C X, Huang J. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301 CrossRef Google Scholar

[3] Durisi G, Koch T, Popovski P. Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets. Proc IEEE, 2016, 104: 1711-1726 CrossRef Google Scholar

[4] Polyanskiy Y, Poor H V, Verdu S. Channel Coding Rate in the Finite Blocklength Regime. IEEE Trans Inform Theor, 2010, 56: 2307-2359 CrossRef Google Scholar

[5] Yang W, Durisi G, Koch T, et al. Quasi-static SIMO fading channels at finite blocklength. In: Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, 2013. 1531--1535. Google Scholar

[6] Yang W, Durisi G, Koch T. Quasi-Static Multiple-Antenna Fading Channels at Finite Blocklength. IEEE Trans Inform Theor, 2014, 60: 4232-4265 CrossRef Google Scholar

[7] Durisi G, Koch T, Ostman J. Short-Packet Communications Over Multiple-Antenna Rayleigh-Fading Channels. IEEE Trans Commun, 2016, 64: 618-629 CrossRef Google Scholar

[8] Gu Y, Chen H, Li Y. Short-Packet Two-Way Amplify-and-Forward Relaying. IEEE Signal Process Lett, 2018, 25: 263-267 CrossRef ADS arXiv Google Scholar

[9] Yu Y, Chen H, Li Y. On the Performance of Non-Orthogonal Multiple Access in Short-Packet Communications. IEEE Commun Lett, 2018, 22: 590-593 CrossRef Google Scholar

[10] Jing Q, Vasilakos A V, Wan J. Security of the Internet of Things: perspectives and challenges. Wireless Netw, 2014, 20: 2481-2501 CrossRef Google Scholar

[11] Shen S, Zhang K, Zhou Y. Security in edge-assisted Internet of Things: challenges and solutions. Sci China Inf Sci, 2020, 63: 220302 CrossRef Google Scholar

[12] Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Comput Networks, 2010, 54: 2787-2805 CrossRef Google Scholar

[13] Poor H V. Information and inference in the wireless physical layer. IEEE Wireless Commun, 2012, 19: 40-47 CrossRef Google Scholar

[14] Poor H V, Goldenbaum M, Yang W. Fundamentals for IoT networks: secure and low-latency communications. In: Proceedings of the 20th International Conference on Distributed Computing and Networking, Bangalore, 2019. 362--364. Google Scholar

[15] Zhou L, Yeh K H, Hancke G. Security and Privacy for the Industrial Internet of Things: An Overview of Approaches to Safeguarding Endpoints. IEEE Signal Process Mag, 2018, 35: 76-87 CrossRef ADS Google Scholar

[16] Qi Q, Chen X, Zhong C. Physical layer security for massive access in cellular Internet of Things. Sci China Inf Sci, 2020, 63: 121301 CrossRef Google Scholar

[17] Bloch M, Barros J. Physical-layer Security: From Information Theory to Security Engineering. Cambridge: Cambridge University Press, 2011. Google Scholar

[18] Liang Y, Poor H V, Shamai (Shitz) S. Information Theoretic Security. FNT Commun Inf Theor, 2008, 5: 355-580 CrossRef Google Scholar

[19] Zhang Y, Wang H M, Yang Q. Secrecy Sum Rate Maximization in Non-orthogonal Multiple Access. IEEE Commun Lett, 2016, 20: 930-933 CrossRef Google Scholar

[20] Wang H M, Zheng T X, Yuan J. Physical Layer Security in Heterogeneous Cellular Networks. IEEE Trans Commun, 2016, 64: 1204-1219 CrossRef Google Scholar

[21] Wang H M, Zheng T, Xia X G. Secure MISO Wiretap Channels With Multiantenna Passive Eavesdropper: Artificial Noise vs. Artificial Fast Fading. IEEE Trans Wireless Commun, 2015, 14: 94-106 CrossRef Google Scholar

[22] Hayashi M. General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel. IEEE Trans Inform Theor, 2006, 52: 1562-1575 CrossRef Google Scholar

[23] Yassaee M H, Aref M R, Gohari A. Non-asymptotic output statistics of random binning and its applications. In: Proceedings of the IEEE International Symposium on Information Theory, Istanbul, 2013. 1849--1853. Google Scholar

[24] Tan V Y F. Achievable second-order coding rates for the wiretap channel. In: Proceedings of the IEEE International Conference on Communication Systems (ICCS), Singapore, 2012. 65--69. Google Scholar

[25] Yang W, Schaefer R F, Poor H V. Wiretap Channels: Nonasymptotic Fundamental Limits. IEEE Trans Inform Theor, 2019, 65: 4069-4093 CrossRef Google Scholar

[26] Wang H M, Yang Q, Ding Z. Secure Short-Packet Communications for Mission-Critical IoT Applications. IEEE Trans Wireless Commun, 2019, 18: 2565-2578 CrossRef Google Scholar

[27] Harrison W K, Almeida J, Bloch M R. Coding for Secrecy: An Overview of Error-Control Coding Techniques for Physical-Layer Security. IEEE Signal Process Mag, 2013, 30: 41-50 CrossRef ADS Google Scholar

[28] Bloch M, Hayashi M, Thangaraj A. Error-Control Coding for Physical-Layer Secrecy. Proc IEEE, 2015, 103: 1725-1746 CrossRef Google Scholar

[29] Bloch M, Barros J, Rodrigues M R D. Wireless Information-Theoretic Security. IEEE Trans Inform Theor, 2008, 54: 2515-2534 CrossRef Google Scholar

[30] Zhou X, McKay M R, Maham B. Rethinking the Secrecy Outage Formulation: A Secure Transmission Design Perspective. IEEE Commun Lett, 2011, 15: 302-304 CrossRef Google Scholar

qqqq

Contact and support