logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 9 : 1327(2020) https://doi.org/10.1360/SSI-2020-0277

Estimation, control, and games of dynamical systems with uncertainty

More info
  • ReceivedSep 7, 2020
  • AcceptedSep 14, 2020
  • PublishedSep 21, 2020

Abstract


Funded by

国家自然科学基金(11688101)


Acknowledgment

作者感谢匿名审稿人和中国科学院系统控制重点实验室的多位同事提出的宝贵修改建议.


References

[1] 钱学森. 创建系统学. 上海: 上海交通大学出版社, 2007. Google Scholar

[2] Guo L. What is systematology. J Syst Sci Math Sci, 2016, 36: 291--301. Google Scholar

[3] Fleming W H. Future Directions in Control Theory: A Mathematical Perspective. Philadelphia: Society for Industrial and Applied Mathematics, 1988. Google Scholar

[4] Hoagland M B, Dodson B. The Way Life Works. New York: Times Books, 1995. Google Scholar

[5] Powers W T. Feedback: Beyond Behaviorism. Science, 1973, 179: 351-356 CrossRef ADS Google Scholar

[6] Åström K J, Kumar P R. Control: A perspective. Automatica, 2014, 50: 3-43 CrossRef Google Scholar

[7] Wiener N. Cybernetics: or Control and Communication in the Animal and the Machine. Cambridge: The MIT Press, 1948. Google Scholar

[8] Tsien H S. Engineering Cybernetics. New York: McGraw-Hill Book, 1954. Google Scholar

[9] Minorsky. N. DIRECTIONAL STABILITY OF AUTOMATICALLY STEERED BODIES. J Am Soc Naval Engineers, 2009, 34: 280-309 CrossRef Google Scholar

[10] Bennett S. The past of pid controllers. Annu Rev Control, 2001, 25: 43-53 CrossRef Google Scholar

[11] Åström K J, Murray R M. Feedback Systems: An Introduction to Scientists and Engineers. Princeton: Princeton University Press, 2008. Google Scholar

[12] A Survey on Industry Impact and Challenges Thereof [Technical Activities]. IEEE Control Syst, 2017, 37: 17-18 CrossRef Google Scholar

[13] Kalman R E. A New Approach to Linear Filtering and Prediction Problems. J Basic Eng, 1960, 82: 35-45 CrossRef Google Scholar

[14] Kalman R E. Contribution to the theory of optimal control. Bol Soc Mat Mexican, 1960, 5: 102--119. Google Scholar

[15] Kalman R E. Mathematical Description of Linear Dynamical Systems. J Soc Industrial Appl Math Ser A Control, 1963, 1: 152-192 CrossRef Google Scholar

[16] Bellman R. Dynamic Programming. Princeton: Princeton University Press, 1957. Google Scholar

[17] Pontryagin L S. Optimal regulation process. Uspekhi Mat Nauk, 1959, 14: 3--20. Google Scholar

[18] Basar T. Control Theory: Twenty-five Seminal Papers (1931--1981). New York: IEEE Press, 2001. Google Scholar

[19] Guo L, Huang L, Jin Y H. Some recent advances of automatic control in China. In: Proceedings of the 14th IFAC World Congress (Plenary Lecture), Beijing, 1999. 31--48. Google Scholar

[20] 郭雷, 程代展, 冯德兴, 等. 控制理论导论: 从基本概念到研究前沿. 北京: 科学出版社, 2005. Google Scholar

[21] Murry R M. Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. Philadelphia: Society for Industrial and Applied Mathematics, 2002. Google Scholar

[22] Guo L. Feedback and uncertainty: Some basic problems and results. Annu Rev Control, 2020, 49: 27-36 CrossRef Google Scholar

[23] Guo L. Time-Varying Stochastic Systems: Stability and Adaptive Theory. 2nd ed. Beijing: Science Press, 2020. Google Scholar

[24] Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston: Birkhauser, 1991. Google Scholar

[25] Silva G J, Datta A, Bhattacharyya S P. PID Controllers for Time-Delay Systems. Berlin: Springer, 2007. Google Scholar

[26] Ziegler J G, Nichols N B. Optimum settings for automatic controllers. Trans ASME, 1942, 64: 759--768. Google Scholar

[27] O'Dwyer A. PI and PID controller tuning rules: an overview and personal perspective. In: Proceedings of IET Irish Signals and Systems Conferences, 2006. 161--166. Google Scholar

[28] Åström K J, Hägglund T. PID Controllers: Theory, Design, and Tuning. Research Triangle Park: Instrument Society of America, 1995. Google Scholar

[29] Zhao C, Guo L. PID controller design for second order nonlinear uncertain systems. Sci China Inf Sci, 2017, 60: 022201 CrossRef Google Scholar

[30] Zhang J, Guo L. Theory and Design of PID Controller for Nonlinear Uncertain Systems. IEEE Control Syst Lett, 2019, 3: 643-648 CrossRef Google Scholar

[31] Han J. From PID to Active Disturbance Rejection Control. IEEE Trans Ind Electron, 2009, 56: 900-906 CrossRef Google Scholar

[32] Han J Q. Active Disturbance Rejection Control Technique — the Technique for Estimating and Compensating the Uncertainties. Beijing: National Defense Industry Press, 2009. Google Scholar

[33] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of American Control Conference, Denver, 2003. 4989--4996. Google Scholar

[34] Huang Y, Xue W. Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans, 2014, 53: 963-976 CrossRef Google Scholar

[35] Zhong S, Huang Y, Guo L. A parameter formula connecting PID and ADRC. Sci China Inf Sci, 2020, 63: 192203 CrossRef Google Scholar

[36] Zhao C, Guo L. Extended PID control of nonlinear uncertain systems. 2019,. arXiv Google Scholar

[37] Ljung L. Consistency of the least-squares identification method. IEEE Trans Autom Control, 1976, 21: 779-781 CrossRef Google Scholar

[38] Moore J B. On strong consistency of least squares identification algorithms. Automatica, 1978, 14: 505-509 CrossRef Google Scholar

[39] Solo V. The convergence of AML. IEEE Trans Autom Control, 1979, 24: 958-962 CrossRef Google Scholar

[40] Chen H F. Strong consistency and convergence rate of least squares identification. Scientia Sinica: Series A, 1982, 25(7): 771-784, doi: 10.1360/ya1982-25-7-771. Google Scholar

[41] Lai T L, Wei C Z. Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems. Ann Statist, 1982, 10: 154-166 CrossRef Google Scholar

[42] Tze Lai , Ching-Zong Wei . Extended least squares and their applications to adaptive control and prediction in linear systems. IEEE Trans Autom Control, 1986, 31: 898-906 CrossRef Google Scholar

[43] Chen H F, Guo L. Convergence rate of least-squares identification and adaptive control for stochastic systems?. Int J Control, 1986, 44: 1459-1476 CrossRef Google Scholar

[44] Han-Fu Chen , Lei Guo . Consistent estimation of the order of stochastic control systems. IEEE Trans Autom Control, 1987, 32: 531-535 CrossRef Google Scholar

[45] Huang D, Guo L. Estimation of Nonstationary Armax Models Based on the Hannan-Rissanen Method. Ann Statist, 1990, 18: 1729-1756 CrossRef Google Scholar

[46] Han-Fu Chen , Ji-Feng Zhang . Identification and adaptive control for systems with unknown orders, delay, and coefficients. IEEE Trans Autom Control, 1990, 35: 866-877 CrossRef Google Scholar

[47] Widrow B, McCool J M, Larimore M G. Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc IEEE, 1976, 64: 1151-1162 CrossRef Google Scholar

[48] Guo L. Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence. IEEE Trans Autom Control, 1990, 35: 141-147 CrossRef Google Scholar

[49] Guo L. Stability of Recursive Stochastic Tracking Algorithms. SIAM J Control Optim, 1994, 32: 1195-1225 CrossRef Google Scholar

[50] Lei Guo , Lennart Ljung . Exponential stability of general tracking algorithms. IEEE Trans Autom Control, 1995, 40: 1376-1387 CrossRef Google Scholar

[51] Lei Guo , Lennart Ljung . Performance analysis of general tracking algorithms. IEEE Trans Autom Control, 1995, 40: 1388-1402 CrossRef Google Scholar

[52] Guo L, Ljung L, Priouret P. Performance analysis of the forgetting factor RLS algorithm. Int J Adapt Control Signal Process, 1993, 7: 525-537 CrossRef Google Scholar

[53] Lei Guo , Ljung L, Guan-Jun Wang L. Necessary and sufficient conditions for stability of LMS. IEEE Trans Autom Control, 1997, 42: 761-770 CrossRef Google Scholar

[54] Xie S Y, Zhang Y Q, Guo L. Learning and prediction theory of distributed least squares. 2019,. arXiv Google Scholar

[55] Xie S, Guo L. Analysis of Distributed Adaptive Filters Based on Diffusion Strategies Over Sensor Networks. IEEE Trans Autom Control, 2018, 63: 3643-3658 CrossRef Google Scholar

[56] Xie S, Guo L. A necessary and sufficient condition for stability of LMS-based consensus adaptive filters. Automatica, 2018, 93: 12-19 CrossRef Google Scholar

[57] Xie S, Guo L. Analysis of Normalized Least Mean Squares-Based Consensus Adaptive Filters under a General Information Condition. SIAM J Control Optim, 2018, 56: 3404-3431 CrossRef Google Scholar

[58] Xie S, Guo L. Analysis of compressed distributed adaptive filters. Automatica, 2020, 112: 108707 CrossRef Google Scholar

[59] Åström K J, Wittenmark B. Adaptive Control, 2nd ed. Boston: Addison-Wesley, 1995. Google Scholar

[60] Feldbaum A A. Dual control theory, parts I and II. Autom Remote Control, 1961, 21: 874--880. Google Scholar

[61] Simon H A. Dynamic Programming Under Uncertainty with a Quadratic Criterion Function. Econometrica, 1956, 24: 74 CrossRef Google Scholar

[62] Åström K J, Wittenmark B. On self tuning regulators. Automatica, 1973, 9: 185-199 CrossRef Google Scholar

[63] Wei Ren , Kumar P R. Stochastic adaptive prediction and model reference control. IEEE Trans Autom Control, 1994, 39: 2047-2060 CrossRef Google Scholar

[64] Ljung L. Analysis of recursive stochastic algorithms. IEEE Trans Autom Control, 1977, 22: 551-575 CrossRef Google Scholar

[65] Goodwin G C, Ramadge P J and Caines P E, Discrete-time multivariable adaptive control, IEEE Transactions on Automatic Control, 1980, 25(3): 449-456, doi: 10.1109/CDC.1979.270192. Google Scholar

[66] Goodwin G C, Ramadge P J, Caines P E. Discrete Time Stochastic Adaptive Control. SIAM J Control Optim, 1981, 19: 829-853 CrossRef Google Scholar

[67] Lei Guo , Han-Fu Chen . The AAstrom-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers. IEEE Trans Autom Control, 1991, 36: 802-812 CrossRef Google Scholar

[68] Guo L. Convergence and logarithm laws of self-tuning regulators. Automatica, 1995, 31: 435-450 CrossRef Google Scholar

[69] Xie L L, Guo L. Adaptive control of discrete-time nonlinear systems with structural uncertainties. Lectures on Systems, Control, and Information, AMS/IP, 2000. Google Scholar

[70] Guo L. A retrospect of the research on self-tuning regulators. J Syst Sci Math Sci, 2012, 32: 1460--1471. Google Scholar

[71] Bercu B. Weighted Estimation and Tracking for ARMAX Models. SIAM J Control Optim, 1995, 33: 89-106 CrossRef Google Scholar

[72] Lei Guo . Self-convergence of weighted least-squares with applications to stochastic adaptive control. IEEE Trans Autom Control, 1996, 41: 79-89 CrossRef Google Scholar

[73] Chen H F, Guo L. Asymptotically Optimal Adaptive Control with Consistent Parameter Estimates. SIAM J Control Optim, 1987, 25: 558-575 CrossRef Google Scholar

[74] Duncan T E, Guo L, Pasik-Duncan B. Adaptive continuous-time linear quadratic Gaussian control. IEEE Trans Autom Control, 1999, 44: 1653-1662 CrossRef Google Scholar

[75] Guo L. On Adaptive Stabilization of Time-Varying Stochastic Systems. SIAM J Control Optim, 1990, 28: 1432-1451 CrossRef Google Scholar

[76] Xue F, Guo L, Huang M Y. Towards understanding the capability of adaptation for time-varying systems. Automatica, 2001, 37: 1551-1560 CrossRef Google Scholar

[77] Caines P E and Zhang J F, On the adaptive control of jump parameter systems via nonlinear filtering, SIAM journal on control and optimization, 1995, 33(6): 17581777, doi: 10.1109/CDC.1992.371637. Google Scholar

[78] Xue F, Guo L. Necessary and sufficient conditions for adaptive stablizability of jump linear systems. Commun Inf Syst, 2001, 1: 205-224 CrossRef Google Scholar

[79] Ji Y, Chizeck H J. Jump linear quadratic Gaussian control: steady-state solution and testable conditions. Control Theory Adv Tech, 1990, 6: 289--319. Google Scholar

[80] Khargonekar P, Georgiou T, Pascoal A. On the robust stability of linear time-invariant plants with unstructured uncertainty. IEEE Trans Autom Control, 1987, 32: 201-207 CrossRef Google Scholar

[81] Lei Guo . On critical stability of discrete-time adaptive nonlinear control. IEEE Trans Autom Control, 1997, 42: 1488-1499 CrossRef Google Scholar

[82] Li C, Guo L. On Feedback Capability in a Class of Nonlinearly Parameterized Uncertain Systems. IEEE Trans Autom Control, 2011, 56: 2946-2951 CrossRef Google Scholar

[83] Liu Z, Li C. Is it Possible to Stabilize Discrete-Time Parameterized Uncertain Systems Growing Exponentially Fast?. SIAM J Control Optim, 2019, 57: 1965-1984 CrossRef Google Scholar

[84] Li C, Guo L. A new critical theorem for adaptive nonlinear stabilization. Automatica, 2010, 46: 999-1007 CrossRef Google Scholar

[85] Liang-Liang Xie , Lei Guo . Fundamental limitations of discrete-time adaptive nonlinear control. IEEE Trans Autom Control, 1999, 44: 1777-1782 CrossRef Google Scholar

[86] Li C, Lam J. Stabilization of Discrete-Time Nonlinear Uncertain Systems by Feedback Based on LS Algorithm. SIAM J Control Optim, 2013, 51: 1128-1151 CrossRef Google Scholar

[87] Guo L, Li C, Xie L L. A polynomial criterion for adaptive stabilizability of discrete-time nonlinear systems. Commun Inf Syst, 2006, 6: 273-298 CrossRef Google Scholar

[88] Li C Y, Guo L. A dynamical inequality for the output of uncertain nonlinear systems. Sci China Inf Sci, 2013, 56: 1-9 CrossRef Google Scholar

[89] Liang-Liang Xie , Lei Guo . How much uncertainty can be dealt with by feedback?. IEEE Trans Autom Control, 2000, 45: 2203-2217 CrossRef Google Scholar

[90] Huang C, Guo L. On feedback capability for a class of semiparametric uncertain systems. Automatica, 2012, 48: 873-878 CrossRef Google Scholar

[91] Xue F, Guo L. On limitations of the sampled-data feedback for nonparametric dynamical systems. J Syst Sci Complex, 2002, 15: 225--250. Google Scholar

[92] Ren J, Cheng Z, Guo L. Further results on limitations of sampled-data feedback. J Syst Sci Complex, 2014, 27: 817-835 CrossRef Google Scholar

[93] Guo L. How much uncertainty can feedback mechanism deal with. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control, Cape Town, 2014. 24--29. Google Scholar

[94] Wiener N. The Human Use of Human Beings: Cybernetics and Society. Washington: Da Capo Press, 1954. Google Scholar

[95] Basar T, Olsder G J. Dynamic Noncooperative Game Theory. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 1999. Google Scholar

[96] Guest Editorial, Special Topic: Gmaes in Control Systems, National Science Review, 2020, 7(7): 1115-1146. Google Scholar

[97] Li Y, Guo L. Towards a theory of stochastic adaptive differential games. In: Proceedings of the 50th IEEE Conference On Decision and Control and European Control Conference, Orlando, 2011. 12--15. Google Scholar

[98] Yuan S, Guo L. Stochastic adaptive dynamical games. Sci Sin Math, 2016, 46: 1367--1382. Google Scholar

[99] Nash J F. Equilibrium Points in n-Person Games. Proc Natl Acad Sci USA, 1950, 36: 48-49 CrossRef ADS Google Scholar

[100] Axelrod R. The Complexity of Cooperation: Agent-based Models of Competition and Collaboration. Princeton: Princeton University Press, 1997. Google Scholar

[101] Mu Y F, Guo L. How cooperation arises from rational players?. Sci China Inf Sci, 2013, 56: 1-9 CrossRef Google Scholar

[102] Vicsek T, Czirók A, Ben-Jacob E. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys Rev Lett, 1995, 75: 1226-1229 CrossRef ADS arXiv Google Scholar

[103] Tang G, Guo L. Convergence of a Class of Multi-Agent Systems In Probabilistic Framework. Jrl Syst Sci Complex, 2007, 20: 173-197 CrossRef Google Scholar

[104] Chen G, Liu Z, Guo L. The Smallest Possible Interaction Radius for Synchronization of Self-Propelled Particles. SIAM Rev, 2014, 56: 499-521 CrossRef Google Scholar

[105] Chen C, Chen G, Guo L. On the minimum number of neighbors needed for consensus of flocks. Control Theor Technol, 2017, 15: 327-339 CrossRef Google Scholar

[106] Chen G. Small Noise May Diversify Collective Motion in Vicsek Model. IEEE Trans Autom Control, 2017, 62: 636-651 CrossRef Google Scholar

[107] Han J, Li M, Guo L. Soft Control on Collective Behavior of a Group of Autonomous Agents By a Shill Agent. Jrl Syst Sci Complex, 2006, 19: 54-62 CrossRef Google Scholar

[108] Liu Z, Han J, Hu X. The proportion of leaders needed for the expected consensus. Automatica, 2011, 47: 2697-2703 CrossRef Google Scholar

[109] 郭雷. 关于控制理论发展的某些思考. 系统科学与数学, 2011, 31: 1014--1018. Google Scholar

[110] Mu Y F, Guo L. Towards a new paradigm of control theory. In: Proceedings of the 1st Chinese Automation Congress (Plenary Lecture): Hangzhou, 2009. 26--49. Google Scholar

[111] Zhang R R, Guo L. Controllability of Nash Equilibrium in Game-Based Control Systems. IEEE Trans Autom Control, 2019, 64: 4180-4187 CrossRef Google Scholar

[112] Zhang R, Wang F, Guo L. On game-based control systems and beyond. Natl Sci Rev, 2020, 7: 1116-1117 CrossRef Google Scholar

[113] Zhang R, Guo L. Controllability of Stochastic Game-Based Control Systems. SIAM J Control Optim, 2019, 57: 3799-3826 CrossRef Google Scholar

[114] 王芳, 郭雷. 人机融合社会中的系统调控. 系统工程理论与实践, 2020, 40: 1935--1944. Google Scholar