logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 4 : 663(2021) https://doi.org/10.1360/SSI-2020-0227

Determining safe flight area of UAVs based on variable weight threat assessment

More info
  • ReceivedJul 25, 2020
  • AcceptedSep 25, 2020
  • PublishedMar 26, 2021

Abstract


Funded by

国家自然科学基金(61825302,U2013201)

科技创新2030 — “新一代人工智能"重大项目(2018AA0100800)

江苏省“333高层次人才培养工程"科研项目(BRA2019051)


References

[1] Lyu Y, Kang T, Pan Q. UAV sense and avoidance: concepts, technologies, and systems. Sci Sin-Inf, 2019, 49: 520-537 CrossRef Google Scholar

[2] Zheng T R, Sun L M, Lou T T, et al. Determination mathod of safe flight area for UAV inspection for transmission lines based on electromagnetic field calculation. Shandong Electr Power Technol, 2018, 45: 27--30. Google Scholar

[3] Xie C S, Li X. Division and evaluation of flight forbidden area in servere weather. Chinese J Safety Sci, 2010, 20: 47--52. Google Scholar

[4] Chang T Q, Zhao L Y, Guo L B, et al. Multi target threat assessment method for tank battlefield environment. Acta Ordnance Equipment Eng, 2019, 40: 88--93. Google Scholar

[5] Zhang Q L, Zhao Y F, Rong S, et al. Optimization of mining method for gently inclined thin vein based on variable weight theory and TOPSIS. Gold Sci Technol, 2019, 27: 844--850. Google Scholar

[6] Zheng G, Ma J C, Zhang E G. Research on fuzzy comprehensive evaluation of milling performance based on variable weight method. Manuf Technol Mach Tool, 2020, 6: 112--117. Google Scholar

[7] Xiong X, Chen L, Liang J. Vehicle Driving Risk Prediction Based on Markov Chain Model. Discrete Dyn Nat Soc, 2018, 2018(8): 1-12 CrossRef Google Scholar

[8] Li L, Sun L, Ning G. Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model. Math Problems Eng, 2014, 2014(7): 1-10 CrossRef Google Scholar

[9] Zhou T, Chen M, Yang C. Data fusion using Bayesian theory and reinforcement learning method. Sci China Inf Sci, 2020, 63: 170209 CrossRef Google Scholar

[10] Zhou T, Chen M, Wang Y. Information Entropy-Based Intention Prediction of Aerial Targets under Uncertain and Incomplete Information. Entropy, 2020, 22: 279 CrossRef ADS Google Scholar

[11] Di R, Gao X, Guo Z. A Threat Assessment Method for Unmanned Aerial Vehicle Based on Bayesian Networks under the Condition of Small Data Sets. Math Problems Eng, 2018, 2018(5): 1-17 CrossRef Google Scholar

[12] Wang G, Guo L, Duan H. Wavelet Neural Network Using Multiple Wavelet Functions in Target Threat Assessment. Sci World J, 2013, 2013(1): 1-7 CrossRef Google Scholar

[13] Zhu J H, Guo Y, Wang Z X. 基于多特征的域间路由节点安全状态评估方法. Sci Sin-Inf, 2014, 44: 527-536 CrossRef Google Scholar

[14] Li R. UAV route and flight control law evaluation technology. Dissertation for Master Degree. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. Google Scholar

[15] Wang J, Zhou S D, Ye S, et al. A method of weather level modeling and assessmnet for UAVs mountainous region. Electro Optic Control, 2012, 19: 108--112. Google Scholar

[16] Ao Q, Fang B, Huang C. Radar detection probability model based on real-time RCS. Comput Simul, 2016, 33: 1--5. Google Scholar

[17] Wei C Y, Zang W L, Jiang J L. The utmost shooting boundary analysis of cannon fire against any velocity target. Acta Ordnance Eng, 2008, 29: 1296--1302. Google Scholar

[18] Wang D Z, Teng K N, Xiao Y J, et al. Networked cooperative air-defense target assignment of ground-to-air missile. Command Control Simul, 2019, 41: 13--16. Google Scholar

[19] Zhao J Y, Liu X W, Jiang L. Hit probability calculation of photoelectric guided missile under smoke jamming condition. J Detect Control, 2019, 41: 102--105. Google Scholar

[20] Pu H Y, Wang He, Wei R X, et al. Autonomous collision avoidance control for cooperative UAV under dynamic threat. Electro Opt Control, 2017, 24: 28--31. Google Scholar

[21] Skowron M, Chmielowiec W, Glowacka K. Sense and avoid for small unmanned aircraft systems: Research on methods and best practices. Proc Institution Mech Engineers Part G-J Aerospace Eng, 2019, 233: 6044-6062 CrossRef Google Scholar

[22] 隆 , 党 , 阳 . 喷射转发算法: 一种基于Markov位置预测模型的DTN路由算法. Sci Sin-Inf, 2010, 40: 1312-1320 CrossRef Google Scholar

[23] Pan T, Mo L. Mean-square consensus of heterogeneous multi-agent systemsunder Markov switching topologies. Sci Sin-Inf, 2016, 46: 1621-1632 CrossRef Google Scholar

[24] Zhang Y Y. Air target threat assessment method based on cloud model theory. Dissertation for Master Degree. Zhengzhou: PLA Information Engineering University, 2013. Google Scholar

[25] Wu J J. Aviation Meteorology. Dalian: Dalian Maritime University Press, 2017. Google Scholar

  • Figure 1

    (Color online) Threat of UAV battlefield environment

  • Figure 2

    (Color online) Determination UAV safe flight area

  • Figure 3

    (Color online) Threat assessment indexes of UAV battlefield environment

  • Figure 4

    (Color online) Antiaircraft gun threat

  • Figure 5

    (Color online) (a) Missile threat area; (b) cross section of missile threat area

  • Figure 6

    Map grid

  • Figure 7

    (Color online) Flow chart of UAV safe flight area determination based on threat assessment

  • Figure 8

    (Color online) Probability transfer models of (a) oblique position and (b) forward position

  • Figure 11

    (Color online) UAV safe flight area. The threat thresholds are (a) 0.27, (b) 0.45, (c) 0.66, and (d) 0.83.

  • Table 1   Threat information
    Label Type of threat Threat coordinates (km) Threat radius (km)
    1 Antiaircraft gun 1 (150, 700) 60
    2 Antiaircraft gun 2 (200, 350) 70
    3 Air defense missile 1 (700, 300) 90
    4 Air defense missile 2 (700, 800) 80
    5 Cumulus (350, 700) 300
    6 Cumulonimbus (550, 150) 150
    7 Bird 1 (200, 150) 1
    8 Bird 2 (700, 450) 1
    9 Non-hostile flying unit (200, 650) 5
    10 Enemy fighter (500, 300) 50
    11 Radar 1 (480, 290) 150
    12 Radar 2 (780, 650) 150
    13 Radar 3 (250, 350) 200
    14 Radar 4 (700, 210) 200
  • Table 2   Types of meteorological threat
    Meteorology Classification Impact of weather on communication
    Pale cumulus 0.1
    Cumulus Broken Cumulus 0.3
    Thick Cumulus 0.5
    2*Cumulonimbus Bald cumulonimbus 0.7
    Cumulonimbus capillatus 0.9
    Translucent stratocumulus 0.1
    Obscuring stratocumulus 0.4
    Stratocumulus Cumulus stratocumulus 0.1
    Stratocumulus castellatus 0.7
    Stratocumulus lenticularis 0.2
    2*Stratus Single cloud 0.4
    Fragment cloud 0.1
    2*Rain cloud Rain cloud 0.7
    Broken rain cloud 0.5
  • Table 3   Threat values of non-cooperative flying units
    Non-cooperative flying unit Threat size Threat radius (km)
    Bird 0.5 1
    Non-hostile flying unit 0.9 5
    Enemy fighter 0.9 50
  • Table 4   Parameters of fuzzy cloud model
    Expected value Entropy Superentropy
    0.1 0.05 0.025
    0.3 0.066 0.025
    0.5 0.066 0.025
    0.7 0.066 0.025
    0.9 0.05 0.025
qqqq

Contact and support