References
[1]
System architecture for the 5G System (5GS). Technical Specification, TS 23.501 v16.3.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=System architecture for the 5G System (5GS). Technical Specification, TS 23.501 v16.3.0. Technical Specification Group Services and System Aspects. 2019&
[2]
Shafi
M,
Molisch
A F,
Smith
P J.
5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice.
IEEE J Sel Areas Commun,
2017, 35: 1201-1221
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice&author=Shafi M&author=Molisch A F&author=Smith P J&publication_year=2017&journal=IEEE J Sel Areas Commun&volume=35&pages=1201-1221
[3]
Qualcom. The role of 5G in private networks for industrial IoT. https://www.qualcomm.com/documents/role-5g-private-networks-industrial-iot.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qualcom. The role of 5G in private networks for industrial IoT. https://www.qualcomm.com/documents/role-5g-private-networks-industrial-iot&
[4]
Huawei. What is China doing to accelerate 5G transport network deployment? https://www.huawei.com/en/about-huawei/publications/winwin-magazine/32-extra/china-accelerate-5g-transport-network-deployment.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huawei. What is China doing to accelerate 5G transport network deployment? https://www.huawei.com/en/about-huawei/publications/winwin-magazine/32-extra/china-accelerate-5g-transport-network-deployment&
[5]
Ji
X,
Huang
K,
Jin
L.
Overview of 5G security technology.
Sci China Inf Sci,
2018, 61: 081301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Overview of 5G security technology&author=Ji X&author=Huang K&author=Jin L&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=081301
[6]
Markov I L, Fatima A, Isakov S V, et al. Quantum supremacy is both closer and farther than it appears. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Markov I L, Fatima A, Isakov S V, et al. Quantum supremacy is both closer and farther than it appears. 2018,&
[7]
Prasad
A R,
Arumugam
S,
B
S.
3GPP 5G Security.
JICTS,
2018, 6: 137-158
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=3GPP 5G Security&author=Prasad A R&author=Arumugam S&author=B S&publication_year=2018&journal=JICTS&volume=6&pages=137-158
[8]
Fang
D,
Qian
Y,
Hu
R Q.
Security for 5G Mobile Wireless Networks.
IEEE Access,
2018, 6: 4850-4874
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Security for 5G Mobile Wireless Networks&author=Fang D&author=Qian Y&author=Hu R Q&publication_year=2018&journal=IEEE Access&volume=6&pages=4850-4874
[9]
Ahmad
I,
Kumar
T,
Liyanage
M.
Overview of 5G Security Challenges and Solutions.
IEEE Comm Stand Mag,
2018, 2: 36-43
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Overview of 5G Security Challenges and Solutions&author=Ahmad I&author=Kumar T&author=Liyanage M&publication_year=2018&journal=IEEE Comm Stand Mag&volume=2&pages=36-43
[10]
Cao
J,
Ma
M,
Li
H.
A Survey on Security Aspects for 3GPP 5G Networks.
IEEE Commun Surv Tutorials,
2020, 22: 170-195
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey on Security Aspects for 3GPP 5G Networks&author=Cao J&author=Ma M&author=Li H&publication_year=2020&journal=IEEE Commun Surv Tutorials&volume=22&pages=170-195
[11]
Khan
R,
Kumar
P,
Jayakody
D N K.
A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions.
IEEE Commun Surv Tutorials,
2020, 22: 196-248
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions&author=Khan R&author=Kumar P&author=Jayakody D N K&publication_year=2020&journal=IEEE Commun Surv Tutorials&volume=22&pages=196-248
[12]
Security architecture and procedures for 5G System. Technical Specification, TS 33.501 v15.4.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Security architecture and procedures for 5G System. Technical Specification, TS 33.501 v15.4.0. Technical Specification Group Services and System Aspects. 2019&
[13]
Chao C, Lee W, Wang C, et al. A flexible anti-jamming channel hopping for cognitive radio networks. In: Proceedings of International Symposium on Computing & Networking, 2018. 549--551.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chao C, Lee W, Wang C, et al. A flexible anti-jamming channel hopping for cognitive radio networks. In: Proceedings of International Symposium on Computing & Networking, 2018. 549--551&
[14]
Xiao
L,
Li
Y,
Dai
C.
Reinforcement Learning-Based NOMA Power Allocation in the Presence of Smart Jamming.
IEEE Trans Veh Technol,
2018, 67: 3377-3389
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reinforcement Learning-Based NOMA Power Allocation in the Presence of Smart Jamming&author=Xiao L&author=Li Y&author=Dai C&publication_year=2018&journal=IEEE Trans Veh Technol&volume=67&pages=3377-3389
[15]
Peng
T,
Leckie
C,
Ramamohanarao
K.
Survey of network-based defense mechanisms countering the DoS and DDoS problems.
ACM Comput Surv,
2007, 39: 3
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Survey of network-based defense mechanisms countering the DoS and DDoS problems&author=Peng T&author=Leckie C&author=Ramamohanarao K&publication_year=2007&journal=ACM Comput Surv&volume=39&pages=3
[16]
Marco L, Louis M. ENISA threat landscape for 5G Networks. European Union Agency for Cybersecurity. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Marco L, Louis M. ENISA threat landscape for 5G Networks. European Union Agency for Cybersecurity. 2019&
[17]
Conti
M,
Dragoni
N,
Lesyk
V.
A Survey of Man In The Middle Attacks.
IEEE Commun Surv Tutorials,
2016, 18: 2027-2051
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of Man In The Middle Attacks&author=Conti M&author=Dragoni N&author=Lesyk V&publication_year=2016&journal=IEEE Commun Surv Tutorials&volume=18&pages=2027-2051
[18]
Steig S, Aarnes A, van Do T, et al. A network based IMSI catcher detection. In: Proceedings of International Conference on It Convergence and Security, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Steig S, Aarnes A, van Do T, et al. A network based IMSI catcher detection. In: Proceedings of International Conference on It Convergence and Security, 2016&
[19]
Huang Y, Jin L, Wei H Q, et al. Pilot contamination with MITM attack. In: Proceedings of the 85th Vehicular Technology Conference, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Y, Jin L, Wei H Q, et al. Pilot contamination with MITM attack. In: Proceedings of the 85th Vehicular Technology Conference, 2017&
[20]
system architecture evolution (SAE). Technical Specification, TS 33.401 v15.10.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=system architecture evolution (SAE). Technical Specification, TS 33.401 v15.10.0. Technical Specification Group Services and System Aspects. 2019&
[21]
Huawei. 5G Security: Forward Thinking: Huawei White Paper. 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huawei. 5G Security: Forward Thinking: Huawei White Paper. 2015&
[22]
Shubham G, Balu L P, Narendra S C. Security vulnerabilities in handover authentication mechanism of 5G network. In: Proceedings of International Conference on Secure Cyber Computing and Communication. 2018. 369--374.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shubham G, Balu L P, Narendra S C. Security vulnerabilities in handover authentication mechanism of 5G network. In: Proceedings of International Conference on Secure Cyber Computing and Communication. 2018. 369--374&
[23]
Basin D, Dreier J, Hirschi L, et al. A formal analysis of 5G authentication. In: Proceedings of ACM SIGSAC Conference on Computer and Communications Security, 2018. 1383--1396.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Basin D, Dreier J, Hirschi L, et al. A formal analysis of 5G authentication. In: Proceedings of ACM SIGSAC Conference on Computer and Communications Security, 2018. 1383--1396&
[24]
Study on authentication enhancements in the 5G System (5GS). Technical Report, TR 33.846 v0.3.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on authentication enhancements in the 5G System (5GS). Technical Report, TR 33.846 v0.3.0. Technical Specification Group Services and System Aspects. 2019&
[25]
Arute
F,
Arya
K,
Babbush
R.
Quantum supremacy using a programmable superconducting processor.
Nature,
2019, 574: 505-510
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum supremacy using a programmable superconducting processor&author=Arute F&author=Arya K&author=Babbush R&publication_year=2019&journal=Nature&volume=574&pages=505-510
[26]
Roetteler M, Naehrig M, Svore K M, et al. Quantum resource estimates for computing elliptic curve discrete logarithms. In: Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, 2017. 241--270.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Roetteler M, Naehrig M, Svore K M, et al. Quantum resource estimates for computing elliptic curve discrete logarithms. In: Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, 2017. 241--270&
[27]
Study on the support of 256-bit algorithms for 5G. Technical Report, TR 33.841 v16.1.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on the support of 256-bit algorithms for 5G. Technical Report, TR 33.841 v16.1.0. Technical Specification Group Services and System Aspects. 2019&
[28]
Alrashede H, Shaikh R. IMSI catcher detection method for cellular networks. In: Proceedings of International Conference on Computer Applications and Information Security, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alrashede H, Shaikh R. IMSI catcher detection method for cellular networks. In: Proceedings of International Conference on Computer Applications and Information Security, 2019&
[29]
Wu
Y,
Schober
R,
Ng
D W K.
Secure Massive MIMO Transmission With an Active Eavesdropper.
IEEE Trans Inform Theor,
2016, 62: 3880-3900
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secure Massive MIMO Transmission With an Active Eavesdropper&author=Wu Y&author=Schober R&author=Ng D W K&publication_year=2016&journal=IEEE Trans Inform Theor&volume=62&pages=3880-3900
[30]
Zhou
X,
Maham
B,
Hjorungnes
A.
Pilot Contamination for Active Eavesdropping.
IEEE Trans Wireless Commun,
2012, 11: 903-907
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pilot Contamination for Active Eavesdropping&author=Zhou X&author=Maham B&author=Hjorungnes A&publication_year=2012&journal=IEEE Trans Wireless Commun&volume=11&pages=903-907
[31]
Mukherjee
A,
Swindlehurst
A L.
Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper.
IEEE Trans Signal Process,
2013, 61: 82-91
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper&author=Mukherjee A&author=Swindlehurst A L&publication_year=2013&journal=IEEE Trans Signal Process&volume=61&pages=82-91
[32]
Lei Xu
,
Chunxiao Jiang
,
Jian Wang
.
Information Security in Big Data: Privacy and Data Mining.
IEEE Access,
2014, 2: 1149-1176
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information Security in Big Data: Privacy and Data Mining&author=Lei Xu &author=Chunxiao Jiang &author=Jian Wang &publication_year=2014&journal=IEEE Access&volume=2&pages=1149-1176
[33]
Wang
D,
Bai
B,
Zhao
W.
A Survey of Optimization Approaches for Wireless Physical Layer Security.
IEEE Commun Surv Tutorials,
2019, 21: 1878-1911
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of Optimization Approaches for Wireless Physical Layer Security&author=Wang D&author=Bai B&author=Zhao W&publication_year=2019&journal=IEEE Commun Surv Tutorials&volume=21&pages=1878-1911
[34]
Wu
Y,
Khisti
A,
Xiao
C.
A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead.
IEEE J Sel Areas Commun,
2018, 36: 679-695
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead&author=Wu Y&author=Khisti A&author=Xiao C&publication_year=2018&journal=IEEE J Sel Areas Commun&volume=36&pages=679-695
[35]
Physical layer procedures for data, Technical Specification, TS 38.214 v16.0.0. Technical Specification Group Services and System Aspects. 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Physical layer procedures for data, Technical Specification, TS 38.214 v16.0.0. Technical Specification Group Services and System Aspects. 2020&
[36]
Hong
Y W P,
Lan
P C,
Kuo
C C J.
Enhancing Physical-Layer Secrecy in Multiantenna Wireless Systems: An Overview of Signal Processing Approaches.
IEEE Signal Process Mag,
2013, 30: 29-40
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancing Physical-Layer Secrecy in Multiantenna Wireless Systems: An Overview of Signal Processing Approaches&author=Hong Y W P&author=Lan P C&author=Kuo C C J&publication_year=2013&journal=IEEE Signal Process Mag&volume=30&pages=29-40
[37]
Mukherjee
A,
Swindlehurst
A L.
Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI.
IEEE Trans Signal Process,
2011, 59: 351-361
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI&author=Mukherjee A&author=Swindlehurst A L&publication_year=2011&journal=IEEE Trans Signal Process&volume=59&pages=351-361
[38]
Wang
H M,
Luo
M,
Yin
Q.
Hybrid Cooperative Beamforming and Jamming for Physical-Layer Security of Two-Way Relay Networks.
IEEE TransInformForensic Secur,
2013, 8: 2007-2020
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid Cooperative Beamforming and Jamming for Physical-Layer Security of Two-Way Relay Networks&author=Wang H M&author=Luo M&author=Yin Q&publication_year=2013&journal=IEEE TransInformForensic Secur&volume=8&pages=2007-2020
[39]
Zhang
W,
Chen
J,
Kuo
Y.
Artificial-Noise-Aided Optimal Beamforming in Layered Physical Layer Security.
IEEE Commun Lett,
2019, 23: 72-75
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial-Noise-Aided Optimal Beamforming in Layered Physical Layer Security&author=Zhang W&author=Chen J&author=Kuo Y&publication_year=2019&journal=IEEE Commun Lett&volume=23&pages=72-75
[40]
Leung-Yan-Cheong
S,
Hellman
M.
The Gaussian wire-tap channel.
IEEE Trans Inform Theor,
1978, 24: 451-456
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Gaussian wire-tap channel&author=Leung-Yan-Cheong S&author=Hellman M&publication_year=1978&journal=IEEE Trans Inform Theor&volume=24&pages=451-456
[41]
Zhang
H,
Huang
Y,
Li
S.
Energy-Efficient Precoder Design for MIMO Wiretap Channels.
IEEE Commun Lett,
2014, 18: 1559-1562
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Energy-Efficient Precoder Design for MIMO Wiretap Channels&author=Zhang H&author=Huang Y&author=Li S&publication_year=2014&journal=IEEE Commun Lett&volume=18&pages=1559-1562
[42]
Zhu
J,
Schober
R,
Bhargava
V K.
Secure Transmission in Multicell Massive MIMO Systems.
IEEE Trans Wireless Commun,
2014, 13: 4766-4781
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secure Transmission in Multicell Massive MIMO Systems&author=Zhu J&author=Schober R&author=Bhargava V K&publication_year=2014&journal=IEEE Trans Wireless Commun&volume=13&pages=4766-4781
[43]
Liu
R,
Poor
H V.
Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages.
IEEE Trans Inform Theor,
2009, 55: 1235-1249
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages&author=Liu R&author=Poor H V&publication_year=2009&journal=IEEE Trans Inform Theor&volume=55&pages=1235-1249
[44]
Fakoorian S A, Swindlehurst A L. Optimal power allocation for GSVD-based beamforming in the MIMO gaussian wiretap channel. In: Proceedings of International Symposium on Information Theory, 2012. 2321--2325.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fakoorian S A, Swindlehurst A L. Optimal power allocation for GSVD-based beamforming in the MIMO gaussian wiretap channel. In: Proceedings of International Symposium on Information Theory, 2012. 2321--2325&
[45]
Geraci
G,
Egan
M,
Yuan
J.
Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding.
IEEE Trans Commun,
2012, 60: 3472-3482
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding&author=Geraci G&author=Egan M&author=Yuan J&publication_year=2012&journal=IEEE Trans Commun&volume=60&pages=3472-3482
[46]
Zheng
G,
Krikidis
I,
Li
J.
Improving Physical Layer Secrecy Using Full-Duplex Jamming Receivers.
IEEE Trans Signal Process,
2013, 61: 4962-4974
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improving Physical Layer Secrecy Using Full-Duplex Jamming Receivers&author=Zheng G&author=Krikidis I&author=Li J&publication_year=2013&journal=IEEE Trans Signal Process&volume=61&pages=4962-4974
[47]
Lee
J H.
Full-Duplex Relay for Enhancing Physical Layer Security in Multi-Hop Relaying Systems.
IEEE Commun Lett,
2015, 19: 525-528
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Full-Duplex Relay for Enhancing Physical Layer Security in Multi-Hop Relaying Systems&author=Lee J H&publication_year=2015&journal=IEEE Commun Lett&volume=19&pages=525-528
[48]
Ebrahimi N, Yektakhah B, Sarabandi K, et al. A novel physical layer security technique using master-slave full duplex communication. In: Proceedings of IEEE MTT-S International Microwave Symposium, 2019. 1096--1099.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ebrahimi N, Yektakhah B, Sarabandi K, et al. A novel physical layer security technique using master-slave full duplex communication. In: Proceedings of IEEE MTT-S International Microwave Symposium, 2019. 1096--1099&
[49]
Yan
S,
Zhou
X,
Yang
N.
Secret Channel Training to Enhance Physical Layer Security With a Full-Duplex Receiver.
IEEE TransInformForensic Secur,
2018, 13: 2788-2800
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secret Channel Training to Enhance Physical Layer Security With a Full-Duplex Receiver&author=Yan S&author=Zhou X&author=Yang N&publication_year=2018&journal=IEEE TransInformForensic Secur&volume=13&pages=2788-2800
[50]
Gwon Y, Dastangoo S, Fossa C, et al. Competing mobile network game: embracing antijamming and jamming strategies with reinforcement learning. In: Proceedings of Communications and Networking Symposium, 2013. 28--36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gwon Y, Dastangoo S, Fossa C, et al. Competing mobile network game: embracing antijamming and jamming strategies with reinforcement learning. In: Proceedings of Communications and Networking Symposium, 2013. 28--36&
[51]
Erpek
T,
Sagduyu
Y E,
Shi
Y.
Deep Learning for Launching and Mitigating Wireless Jamming Attacks.
IEEE Trans Cogn Commun Netw,
2019, 5: 2-14
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Learning for Launching and Mitigating Wireless Jamming Attacks&author=Erpek T&author=Sagduyu Y E&author=Shi Y&publication_year=2019&journal=IEEE Trans Cogn Commun Netw&volume=5&pages=2-14
[52]
Yao
F,
Jia
L.
A Collaborative Multi-Agent Reinforcement Learning Anti-Jamming Algorithm in Wireless Networks.
IEEE Wireless Commun Lett,
2019, 8: 1024-1027
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Collaborative Multi-Agent Reinforcement Learning Anti-Jamming Algorithm in Wireless Networks&author=Yao F&author=Jia L&publication_year=2019&journal=IEEE Wireless Commun Lett&volume=8&pages=1024-1027
[53]
Rappaport
T S,
Shu Sun
T S,
Mayzus
R.
Millimeter Wave Mobile Communications for 5G Cellular: It Will Work.
IEEE Access,
2013, 1: 335-349
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Millimeter Wave Mobile Communications for 5G Cellular: It Will Work&author=Rappaport T S&author=Shu Sun T S&author=Mayzus R&publication_year=2013&journal=IEEE Access&volume=1&pages=335-349
[54]
Wang
C,
Wang
H M.
Physical Layer Security in Millimeter Wave Cellular Networks.
IEEE Trans Wireless Commun,
2016, 15: 5569-5585
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Physical Layer Security in Millimeter Wave Cellular Networks&author=Wang C&author=Wang H M&publication_year=2016&journal=IEEE Trans Wireless Commun&volume=15&pages=5569-5585
[55]
Zhu
Y,
Wang
L,
Wong
K K.
Secure Communications in Millimeter Wave Ad Hoc Networks.
IEEE Trans Wireless Commun,
2017, 16: 3205-3217
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secure Communications in Millimeter Wave Ad Hoc Networks&author=Zhu Y&author=Wang L&author=Wong K K&publication_year=2017&journal=IEEE Trans Wireless Commun&volume=16&pages=3205-3217
[56]
Vuppala
S,
Tolossa
Y J,
Kaddoum
G.
On the Physical Layer Security Analysis of Hybrid Millimeter Wave Networks.
IEEE Trans Commun,
2018, 66: 1139-1152
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the Physical Layer Security Analysis of Hybrid Millimeter Wave Networks&author=Vuppala S&author=Tolossa Y J&author=Kaddoum G&publication_year=2018&journal=IEEE Trans Commun&volume=66&pages=1139-1152
[57]
Jr R W H, González-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2015, 10: 436--453.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jr R W H, González-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2015, 10: 436--453&
[58]
Kapetanovic
D,
Zheng
G,
Rusek
F.
Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks.
IEEE Commun Mag,
2015, 53: 21-27
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks&author=Kapetanovic D&author=Zheng G&author=Rusek F&publication_year=2015&journal=IEEE Commun Mag&volume=53&pages=21-27
[59]
Yang
T,
Zhang
R,
Cheng
X.
Secure Massive MIMO Under Imperfect CSI: Performance Analysis and Channel Prediction.
IEEE TransInformForensic Secur,
2019, 14: 1610-1623
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secure Massive MIMO Under Imperfect CSI: Performance Analysis and Channel Prediction&author=Yang T&author=Zhang R&author=Cheng X&publication_year=2019&journal=IEEE TransInformForensic Secur&volume=14&pages=1610-1623
[60]
Chen
J,
Chen
X,
Gerstacker
W H.
Resource Allocation for a Massive MIMO Relay Aided Secure Communication.
IEEE TransInformForensic Secur,
2016, 11: 1700-1711
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Resource Allocation for a Massive MIMO Relay Aided Secure Communication&author=Chen J&author=Chen X&author=Gerstacker W H&publication_year=2016&journal=IEEE TransInformForensic Secur&volume=11&pages=1700-1711
[61]
Sheikhi M, Razavizadeh S M. Security vulnerability of FDD massive MIMO systems in downlink training phase. In: Proceedings of International Symposium on Telecommunications, 2018. 492--496.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sheikhi M, Razavizadeh S M. Security vulnerability of FDD massive MIMO systems in downlink training phase. In: Proceedings of International Symposium on Telecommunications, 2018. 492--496&
[62]
Wu
Y,
Wen
C K,
Chen
W.
Data-Aided Secure Massive MIMO Transmission Under the Pilot Contamination Attack.
IEEE Trans Commun,
2019, 67: 4765-4781
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Data-Aided Secure Massive MIMO Transmission Under the Pilot Contamination Attack&author=Wu Y&author=Wen C K&author=Chen W&publication_year=2019&journal=IEEE Trans Commun&volume=67&pages=4765-4781
[63]
Study on security aspects of network slicing enhancement, Technical Report, TR 33.813 v0.6.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on security aspects of network slicing enhancement, Technical Report, TR 33.813 v0.6.0. Technical Specification Group Services and System Aspects. 2019&
[64]
Scott-Hayward S, O'Callaghan G, Sezer S. SDN security: a survey. In: Proceedings of IEEE SDN for Future Networks and Services, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scott-Hayward S, O'Callaghan G, Sezer S. SDN security: a survey. In: Proceedings of IEEE SDN for Future Networks and Services, 2013&
[65]
Lal
S,
Taleb
T,
Dutta
A.
NFV: Security Threats and Best Practices.
IEEE Commun Mag,
2017, 55: 211-217
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=NFV: Security Threats and Best Practices&author=Lal S&author=Taleb T&author=Dutta A&publication_year=2017&journal=IEEE Commun Mag&volume=55&pages=211-217
[66]
Liyanage M, Salo J, Braeken A, et al. 5G privacy: scenarios and solutions. In: Proceedings of IEEE 5G World Forum, 2018. 197--203.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liyanage M, Salo J, Braeken A, et al. 5G privacy: scenarios and solutions. In: Proceedings of IEEE 5G World Forum, 2018. 197--203&
[67]
Study on long term key update procedures (LTKUP), Technical Report, TR 33.834 v16.1.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on long term key update procedures (LTKUP), Technical Report, TR 33.834 v16.1.0. Technical Specification Group Services and System Aspects. 2019&
[68]
Dabbagh
M,
Hamdaoui
B,
Guizani
M.
Software-defined networking security: pros and cons.
IEEE Commun Mag,
2015, 53: 73-79
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Software-defined networking security: pros and cons&author=Dabbagh M&author=Hamdaoui B&author=Guizani M&publication_year=2015&journal=IEEE Commun Mag&volume=53&pages=73-79
[69]
Hawilo
H,
Shami
A,
Mirahmadi
M.
NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC).
IEEE Network,
2014, 28: 18-26
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC)&author=Hawilo H&author=Shami A&author=Mirahmadi M&publication_year=2014&journal=IEEE Network&volume=28&pages=18-26
[70]
Chen S Z. Analysis and suggestion of future 5G directions. Telecommun Sci, 2016, 32: 1--10.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen S Z. Analysis and suggestion of future 5G directions. Telecommun Sci, 2016, 32: 1--10&
[71]
Zhang K, Qiu X F. CMD: a convincing mechanism for MITM detection in SDN. In: Proceedings of International Conference on Consumer Electronics, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang K, Qiu X F. CMD: a convincing mechanism for MITM detection in SDN. In: Proceedings of International Conference on Consumer Electronics, 2018&
[72]
Tselios C, Politis I, Kotsopoulos S. Enhancing SDN security for IoT-related deployments through blockchain. In: Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks, 2017. 303--308.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tselios C, Politis I, Kotsopoulos S. Enhancing SDN security for IoT-related deployments through blockchain. In: Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks, 2017. 303--308&
[73]
Siddiqui M S, Escalona E, Trouva E, et al. Policy based virtualised security architecture for SDN/NFV enabled 5G access networks. In: Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks, 2016. 44--49.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Siddiqui M S, Escalona E, Trouva E, et al. Policy based virtualised security architecture for SDN/NFV enabled 5G access networks. In: Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks, 2016. 44--49&
[74]
Security assurance methodology (SECAM) and security assurance specification (SCAS) for 3GPP virtualized network products, Technical Report, TR 33.818 v0.4.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Security assurance methodology (SECAM) and security assurance specification (SCAS) for 3GPP virtualized network products, Technical Report, TR 33.818 v0.4.0. Technical Specification Group Services and System Aspects. 2019&
[75]
Study on security impacts of virtualisation, Technical Report, TR 33.848 v0.3.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on security impacts of virtualisation, Technical Report, TR 33.848 v0.3.0. Technical Specification Group Services and System Aspects. 2019&
[76]
Niu B, You W, Tang H B, et al. 5G network slice security trust degree calculation model. In: Proceedings of IEEE International Conference on Computer and Communications, 2017. 1150--1157.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Niu B, You W, Tang H B, et al. 5G network slice security trust degree calculation model. In: Proceedings of IEEE International Conference on Computer and Communications, 2017. 1150--1157&
[77]
Sattar D, Matrawy A. Towards secure slicing: using slice isolation to mitigate DDoS attacks on 5G core network slices. In: Proceedings of Communications and Networking Symposium, 2019. 82--90.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sattar D, Matrawy A. Towards secure slicing: using slice isolation to mitigate DDoS attacks on 5G core network slices. In: Proceedings of Communications and Networking Symposium, 2019. 82--90&
[78]
Li P, Xu C, Xu H, et al. Research on data privacy protection algorithm with homomorphism mechanism based on redundant slice technology in wireless sensor networks. China Commun, 2019, 16: 158--170.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li P, Xu C, Xu H, et al. Research on data privacy protection algorithm with homomorphism mechanism based on redundant slice technology in wireless sensor networks. China Commun, 2019, 16: 158--170&
[79]
Liu H L. Research on privacy protection framework design and key technologies in large data environment. In: Proceedings of International Conference on Robots and Intelligent System, 2019. 327--330.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu H L. Research on privacy protection framework design and key technologies in large data environment. In: Proceedings of International Conference on Robots and Intelligent System, 2019. 327--330&
[80]
Yin
C,
Xi
J,
Sun
R.
Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things.
IEEE Trans Ind Inf,
2018, 14: 3628-3636
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things&author=Yin C&author=Xi J&author=Sun R&publication_year=2018&journal=IEEE Trans Ind Inf&volume=14&pages=3628-3636
[81]
Shokri R, Theodorakopoulos G, Boudec J L, et al. Quantifying location privacy. In: Proceedings of IEEE Symposium on Security and Privacy, 2011. 247--262.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shokri R, Theodorakopoulos G, Boudec J L, et al. Quantifying location privacy. In: Proceedings of IEEE Symposium on Security and Privacy, 2011. 247--262&
[82]
Zheng J Y, Tan X B, Zou C, et al. A cloaking-based approach to protect location privacy in location-based services. In: Proceedings of Conference on Computational Complexity, 2014. 5459--5464.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zheng J Y, Tan X B, Zou C, et al. A cloaking-based approach to protect location privacy in location-based services. In: Proceedings of Conference on Computational Complexity, 2014. 5459--5464&
[83]
Study on the security of the enhancement to the 5G Core (5GC) location services, Technical Report, TR 33.814 v16.0.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on the security of the enhancement to the 5G Core (5GC) location services, Technical Report, TR 33.814 v16.0.0. Technical Specification Group Services and System Aspects. 2019&
[84]
Suguna M, Anusia R, Shalinie S M, et al. Secure identity management in mobile cloud computing. In: Proceedings of International Conference on Nextgen Electronic Technologies: Silicon to Software, 2017. 42--45.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suguna M, Anusia R, Shalinie S M, et al. Secure identity management in mobile cloud computing. In: Proceedings of International Conference on Nextgen Electronic Technologies: Silicon to Software, 2017. 42--45&
[85]
Norrman K, Dubrova E. Protecting IMSI and user privacy in 5G Networks. In: Proceedings of International Conference on Mobile Multimedia Communications, 2016. 159--166.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Norrman K, Dubrova E. Protecting IMSI and user privacy in 5G Networks. In: Proceedings of International Conference on Mobile Multimedia Communications, 2016. 159--166&
[86]
Study on 5G security enhancements against false base stations, Technical Report, TR 33.809 v0.6.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on 5G security enhancements against false base stations, Technical Report, TR 33.809 v0.6.0. Technical Specification Group Services and System Aspects. 2019&
[87]
Fang
H,
Wang
X,
Tomasin
S.
Machine Learning for Intelligent Authentication in 5G and Beyond Wireless Networks.
IEEE Wireless Commun,
2019, 26: 55-61
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine Learning for Intelligent Authentication in 5G and Beyond Wireless Networks&author=Fang H&author=Wang X&author=Tomasin S&publication_year=2019&journal=IEEE Wireless Commun&volume=26&pages=55-61
[88]
Adem N, Hamdaoui B, Yavuz A. Pseudorandom time-hopping anti-jamming technique for mobile cognitive users. In: Proceedings of IEEE Globecom Workshops, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adem N, Hamdaoui B, Yavuz A. Pseudorandom time-hopping anti-jamming technique for mobile cognitive users. In: Proceedings of IEEE Globecom Workshops, 2015&
[89]
Haus
M,
Waqas
M,
Ding
A Y.
Security and Privacy in Device-to-Device (D2D) Communication: A Review.
IEEE Commun Surv Tutorials,
2017, 19: 1054-1079
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Security and Privacy in Device-to-Device (D2D) Communication: A Review&author=Haus M&author=Waqas M&author=Ding A Y&publication_year=2017&journal=IEEE Commun Surv Tutorials&volume=19&pages=1054-1079
[90]
Li
Q,
Ren
P,
Xu
D.
Security Enhancement and QoS Provisioning for NOMA-Based Cooperative D2D Networks.
IEEE Access,
2019, 7: 129387
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Security Enhancement and QoS Provisioning for NOMA-Based Cooperative D2D Networks&author=Li Q&author=Ren P&author=Xu D&publication_year=2019&journal=IEEE Access&volume=7&pages=129387
[91]
Wang
W,
Teh
K C,
Li
K H.
Enhanced Physical Layer Security in D2D Spectrum Sharing Networks.
IEEE Wireless Commun Lett,
2016, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced Physical Layer Security in D2D Spectrum Sharing Networks&author=Wang W&author=Teh K C&author=Li K H&publication_year=2016&journal=IEEE Wireless Commun Lett&pages=1-1
[92]
Yang
Y,
Wei
Z,
Zhang
Y.
V2X security: A case study of anonymous authentication.
Pervasive Mobile Computing,
2017, 41: 259-269
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=V2X security: A case study of anonymous authentication&author=Yang Y&author=Wei Z&author=Zhang Y&publication_year=2017&journal=Pervasive Mobile Computing&volume=41&pages=259-269
[93]
Study on security aspects of 3GPP support for advanced V2X services, Technical Report, TR 33.836 v0.3.0. Technical Specification Group Services and System Aspects. 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on security aspects of 3GPP support for advanced V2X services, Technical Report, TR 33.836 v0.3.0. Technical Specification Group Services and System Aspects. 2020&
[94]
Suo H, Wan J F, Zou C F, et al. Security in the internet of things: a review. In: Proceedings of International Conference on Computer Science and Electronics Engineering, 2012. 648--651.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suo H, Wan J F, Zou C F, et al. Security in the internet of things: a review. In: Proceedings of International Conference on Computer Science and Electronics Engineering, 2012. 648--651&
[95]
Fan K, Gong Y Y, Du Z, et al. RFID secure application revocation for IoT in 5G. In: Proceedings of IEEE Trustcom/BigDataSE/ISPA, 2015. 175--181.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan K, Gong Y Y, Du Z, et al. RFID secure application revocation for IoT in 5G. In: Proceedings of IEEE Trustcom/BigDataSE/ISPA, 2015. 175--181&
[96]
Xu
Q,
Ren
P,
Song
H.
Security Enhancement for IoT Communications Exposed to Eavesdroppers With Uncertain Locations.
IEEE Access,
2016, 4: 2840-2853
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Security Enhancement for IoT Communications Exposed to Eavesdroppers With Uncertain Locations&author=Xu Q&author=Ren P&author=Song H&publication_year=2016&journal=IEEE Access&volume=4&pages=2840-2853
[97]
Hachinyan O, Khorina A, Zapechnikov S. A game-theoretic technique for securing IoT devices against Mirai botnet. In: Proceedings of IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2018. 1500--1503.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hachinyan O, Khorina A, Zapechnikov S. A game-theoretic technique for securing IoT devices against Mirai botnet. In: Proceedings of IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2018. 1500--1503&
[98]
Battery efficient security for very low throughput machine type communication (MTC) devices (BEST), Technical Specification, TS 33.163 v16.2.0. Technical Specification Group Services and System Aspects. 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Battery efficient security for very low throughput machine type communication (MTC) devices (BEST), Technical Specification, TS 33.163 v16.2.0. Technical Specification Group Services and System Aspects. 2019&
[99]
Study on evolution of cellular IoT security for the 5G system, Technical Report, TR 33.861 v1.6.0. Technical Specification Group Services and System Aspects. 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on evolution of cellular IoT security for the 5G system, Technical Report, TR 33.861 v1.6.0. Technical Specification Group Services and System Aspects. 2020&
[100]
You
X,
Zhang
C,
Tan
X.
AI for 5G: research directions and paradigms.
Sci China Inf Sci,
2019, 62: 21301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AI for 5G: research directions and paradigms&author=You X&author=Zhang C&author=Tan X&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=21301
[101]
Niknam
S,
Dhillon
H S,
Reed
J H.
Federated Learning for Wireless Communications: Motivation, Opportunities, and Challenges.
IEEE Commun Mag,
2020, 58: 46-51
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Federated Learning for Wireless Communications: Motivation, Opportunities, and Challenges&author=Niknam S&author=Dhillon H S&author=Reed J H&publication_year=2020&journal=IEEE Commun Mag&volume=58&pages=46-51
[102]
Wu H Q. New features of network society and industry challenges in the 5G era. J Chongqing Univ Posts Telecom (Nat Sci Ed), 2020, 32: 171--176.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu H Q. New features of network society and industry challenges in the 5G era. J Chongqing Univ Posts Telecom (Nat Sci Ed), 2020, 32: 171--176&
[103]
Eidle D, Ni S Y, Decusatis C, et al. Autonomic security for zero trust networks. In: Proceedings of IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, 2017. 288--293.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Eidle D, Ni S Y, Decusatis C, et al. Autonomic security for zero trust networks. In: Proceedings of IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, 2017. 288--293&
[104]
Lee J, Kim J, Seo J. Cyber attack scenarios on smart city and their ripple effects. In: Proceedings of International Conference on Platform Technology and Service (PlatCon), 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lee J, Kim J, Seo J. Cyber attack scenarios on smart city and their ripple effects. In: Proceedings of International Conference on Platform Technology and Service (PlatCon), 2019&
[105]
Chen H L, Hu M, Yan H, et al. Research on industrial internet of things security architecture and protection strategy. In: Proceedings of International Conference on Virtual Reality, 2019. 365--368.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H L, Hu M, Yan H, et al. Research on industrial internet of things security architecture and protection strategy. In: Proceedings of International Conference on Virtual Reality, 2019. 365--368&
[106]
Mora O B, Rivera R, Larios V M, et al. A use case in cybersecurity based in blockchain to deal with the security and privacy of citizens and smart cities cyberinfrastructures. In: Proceedings of IEEE International Smart Cities Conference, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mora O B, Rivera R, Larios V M, et al. A use case in cybersecurity based in blockchain to deal with the security and privacy of citizens and smart cities cyberinfrastructures. In: Proceedings of IEEE International Smart Cities Conference, 2018&
[107]
Li
B,
Fei
Z,
Zhou
C.
Physical-Layer Security in Space Information Networks: A Survey.
IEEE Internet Things J,
2020, 7: 33-52
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Physical-Layer Security in Space Information Networks: A Survey&author=Li B&author=Fei Z&author=Zhou C&publication_year=2020&journal=IEEE Internet Things J&volume=7&pages=33-52
[108]
Yan S, Wang X Y, Li Z L, et al. Cooperative jamming for physical layer security in hybrid satellite terrestrial relay networks. China Commun, 2019, 16: 154--164.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yan S, Wang X Y, Li Z L, et al. Cooperative jamming for physical layer security in hybrid satellite terrestrial relay networks. China Commun, 2019, 16: 154--164&