[1] Isaac Newton I. Opticks: Or A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. London: Royal Society, 1704. Google Scholar
[2] Kirchhoff G, Bunsen R. Chemical analysis by observation of spectra. Ann der Physik und der Chem (Poggendorff), 1860, 110: 598--625. Google Scholar
[3] Michelson A A. Studies in Optics. New York: Dover Publications, 1995. Google Scholar
[4] Michelson A A, Morley E W. On the relative motion of the earth and the luminiferous ether. Am J Sci, 1887, 34: 333--345. Google Scholar
[5] Rayleigh L. On the interference bands of approximately homogeneous light: in a Letter to Prof. A. Michelson. Phil Mag, 1892, 34: 407--411. Google Scholar
[6] Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series. Math Comp, 1965, 19: 297-297 CrossRef Google Scholar
[7] Jacquinot P, Dufour C. Optical conditions in the use of photo-electric cells in spectrographs and interferometers. J Rech CNRS, 1948, 6: 91--103. Google Scholar
[8] Fellgett P. Theory of multiplex interferometric spectrometry. J Phys Radium, 1958, 19: 187--191. Google Scholar
[9] Goetz A F H, Vane G, Solomon J E. Imaging Spectrometry for Earth Remote Sensing. Science, 1985, 228: 1147-1153 CrossRef ADS Google Scholar
[10] Norton R H, Beer R. New apodizing functions for Fourier spectrometry. J Opt Soc Am, 1976, 66: 259-264 CrossRef Google Scholar
[11] Mertz L. Auxiliary computation for Fourier spectrometry. Infrared Phys, 1967, 7: 17-23 CrossRef Google Scholar
[12] Forman M L, Steel W H, Vanasse G A. Correction of Asymmetric Interferograms Obtained in Fourier Spectroscopy*. J Opt Soc Am, 1966, 56: 59-63 CrossRef Google Scholar
[13] Schott J R. Remote Sensing: The Image Chain Approach. 2nd ed. Oxford: Oxford University Press, 2007. Google Scholar
[14] Fiete R D. Comparison of SNR image quality metrics for remote sensing systems. Opt Eng, 2001, 40: 574-585 CrossRef ADS Google Scholar
[15] Kelly M W, Mooney D L. A method for correcting Fourier transform spectrometer (FTS) dynamic alignment errors. Proc SPIE, 2004, 5425: 443--455. Google Scholar
[16] Rippel H, Jaacks R. Performance data of the double pendulum interferometer. Mikrochim Acta, 1988, 95: 303-306 CrossRef Google Scholar
[17] Griffiths P R, Hirsche B L, Manning C J. Ultra-rapid-scanning Fourier transform infrared spectrometry. Vibal Spectr, 1999, 19: 165-176 CrossRef Google Scholar
[18] Kauppinen J, Heinonen J, Kauppinen I. Interferometers Based on the Rotational Motion. Appl Spectr Rev, 2004, 39: 99-130 CrossRef ADS Google Scholar
[19] Tanii J, Machida T, Ayada H, et al. Ocean color and temperature scanner for ADEOS. Proc SPIE, 1991, 1490: 200-206, doi: 10.1117/12.46625. Google Scholar
[20] Hua J W, Mao J H. Geostationary interferometric-type infrared sounder (GIIRS) on FengYun No.4 metrological satellite. Science, 2018, 70: 24--29. Google Scholar
[21] Bernath P. Atmospheric chemistry experiment (ACE): Analytical chemistry from orbit. TrAC Trends Anal Chem, 2006, 25: 647-654 CrossRef Google Scholar
[22] Hamazaki T, Kaneko Y, Kuze A, et al. Fourier transform spectrometer for greenhouse gases observing satellite. Proc SPIE, 2005, 5659: 73-80. Google Scholar
[23] Jiang C, Tao D X, He H Y. Digital modeling and simulation of AIUS. Spacecr Recovery Remote Sens, 2018, 39: 94--103. Google Scholar
[24] Lucey P G, Horton K A, Williams T J, et al. SMIFTS: A cryogenically-cooled spatially modulated imaging infrared interferometer spectrometer. Proc SPIE, 1993, 1937: 130-141. Google Scholar
[25] Xiangli B, Zhao B C, Xue M Q. Spatially modulated imaging interferometry. Acta Opt Sin, 1998, 18: 18--22. Google Scholar
[26] Xiangli B, Yuan Y, Lv Q B. Spectral transfer function of the Fourier transform spectral imager. Acta Phys Sin, 2009, 58: 5399--5405. Google Scholar
[27] Yarbrough S, Caudill T, Kouba M E, et al. MightySat II.1 hyperspectral imager: summary of on-orbit performance. Proc SPIE, 2002, 4480: 186-197. Google Scholar
[28] Xiangli B, Wang Z H, Liu X B, et al. Hyperspectral imager of the environment and disaster monitoring small satellite. Remote Sens Technol Appl, 2009, 24: 257--262. Google Scholar
[29] Xiangli B. Interferometric Imaging Spectrometry. Post-Doctoral Final Technical Report, Xi'an: Xi'an Institute of Optical and Precision Mechanics, Chinese Academy of Sciences, 1995--1997. Google Scholar
[30] Xiangli B, Huang M, Liu X B, et al. Parallel Sampling Method for LASIS. China Patent, ZL 200710017721.3. Google Scholar
[31] Horton R F, Conger C A, Pellegrino L S. High etendue imaging Fourier transform spectrometer: initial results. Proc SPIE, 1997, 3118: 380--390. Google Scholar
[32] Barducci A, Castagnoli F, Marcoionni P, et al. The ALISEO instrument: further improvements of calibration methods and assessment of interferometer response. Proc SPIE, 2005, 5978: 461--470. Google Scholar
[33] Harlander J M, Roesler F L, Cardon J G. Shimmer: A Spatial Heterodyne Spectrometer for Remote Sensing of Earth ' Middle Atmosphere. Appl Opt, 2002, 41: 1343-1352 CrossRef ADS Google Scholar
[34] Xiangli B, Cai Q, Du S. Large aperture spatial heterodyne imaging spectrometer: Principle and experimental results. Optics Commun, 2015, 357: 148-155 CrossRef ADS Google Scholar
[35] Hansen S M. Spectral line position calibration for the SPIRIT III Fourier transform spectrometer. Opt Eng, 1997, 36: 2987-2991 CrossRef ADS Google Scholar
[36] Althouse W E, Hand S D, Jones L K. Precision alignment of the LIGO 4 km arms using the dual-frequency differential global positioning system. Rev Sci Instruments, 2001, 72: 3086-3094 CrossRef ADS Google Scholar
Figure 1
(Color online) Schematic diagram of imaging spectroscopy
Figure 2
(Color online) Principle of FTS with Michelson interferometer
Figure 3
(Color online) Moving mirror tilted in Michelson interferometer
Figure 4
Three TMFTIS types of high stability. (a) TMFTIS based on double pendulum interferometer; (b) TMFTIS based on ultra-rapid-scanning interferometer; (c) TMFTIS based on Perkin-Elmer Dynascan interferometer
Figure 5
(Color online) Principle of SMFTIS and the interference pattern
Figure 6
(Color online) Optical equivalent model of SMFTIS
Figure 7
(Color online) Principle of TSMFTIS and the interference image
Figure 8
(Color online) Interferogram extraction procedure of TSMFTIS
Figure 9
(Color online) Schematic diagram of parallel sampling method
Lateral shearing interferometer | Modulation depth |
Sagnac | $M_{\rm~I}(\nu)=1$ |
Mach-Zehnder | $M_{\rm~I}(\nu)=1$ |
Lloyd | $M_{\rm~I}(\nu)={\rm~sinc}(2\nu~w\sin\theta)$ |
Fresnel | $M_{\rm~I}(\nu)={\rm~sinc}(2\nu~w\sin\alpha\cos\theta)$ |
Instrument parameter | Instrument characteristic |
Orbit altitude | 500 km |
Imaging mode | Continuous pushbroom |
Ground sampling distance | 2.5 m |
Spectral coverage | 400–1000 nm |
Number of bands | 64 |
Parallel sampling times | 4 |
Maximum frame rate of detector | 700 fps |
Pixel size | 16 $\mu$m |
Quantum efficiency | 0.81@645 nm |
Full well capacity | 200000${\rm~e}^-$ |
$F$# | 5 |
Integration time | 0.179 ms |
Solar elevation angle | $70^\circ$ |
Albedo | 0.3 |
Output electrons of zero OPD | 150156${\rm~e}^-$ |
SNR of the interferogram at the center burst | 500 |