logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 10 : 1427(2020) https://doi.org/10.1360/SSI-2020-0123

Electromagnetic metamaterials—from effective media to field programmable systems

More info
  • ReceivedMay 6, 2020
  • AcceptedJun 24, 2020
  • PublishedOct 15, 2020

Abstract


Funded by

国家重点研发计划(2017YFA0700201,2017YFA0700202,2017YFA0700203)

国家自然科学基金(61631007,61731010,61735010)

国家自然科学基金国际(地区)合作与交流项目(61761136007)

111计划(111-2-05)


References

[1] Veselago V G. THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ. Sov Phys Usp, 1968, 10: 509-514 CrossRef Google Scholar

[2] Pendry J B, Holden A J, Stewart W J. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys Rev Lett, 1996, 76: 4773-4776 CrossRef ADS Google Scholar

[3] Pendry J B, Holden A J, Robbins D J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theor Techn, 1999, 47: 2075-2084 CrossRef ADS Google Scholar

[4] Pendry J B. Negative Refraction Makes a Perfect Lens. Phys Rev Lett, 2000, 85: 3966-3969 CrossRef ADS Google Scholar

[5] Shelby R A. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77-79 CrossRef ADS Google Scholar

[6] Cui T J, Kong J A. Causality in the propagation of transient electromagnetic waves in a left-handed medium. Phys Rev B, 2004, 70: 165113 CrossRef ADS Google Scholar

[7] Cui T J, Kong J A. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium. Phys Rev B, 2004, 70: 205106 CrossRef ADS Google Scholar

[8] Cui T J, Cheng Q, Lu W B. Localization of electromagnetic energy using a left-handed-medium slab. Phys Rev B, 2005, 71: 045114 CrossRef ADS Google Scholar

[9] Cheng Q, Cui T J. High-power generation and transmission through a left-handed material. Phys Rev B, 2005, 72: 113112 CrossRef ADS Google Scholar

[10] Cheng Q, Cui T J. Negative refractions in uniaxially anisotropic chiral media. Phys Rev B, 2006, 73: 113104 CrossRef ADS Google Scholar

[11] Zhang C, Cui T J. Negative reflections of electromagnetic waves in a strong chiral medium. Appl Phys Lett, 2007, 91: 194101 CrossRef ADS arXiv Google Scholar

[12] Eleftheriades G V, Balmain K G, Negative-Refraction Metamaterials. New York: Wiley, 2005. Google Scholar

[13] Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004. Google Scholar

[14] Cui T J, Cheng Q, Huang Z Z. Electromagnetic wave localization using a left-handed transmission-line superlens. Phys Rev B, 2005, 72: 035112 CrossRef ADS Google Scholar

[15] Cui T J, Lin X Q, Cheng Q. Experiments on evanescent-wave amplification and transmission using metamaterial structures. Phys Rev B, 2006, 73: 245119 CrossRef ADS Google Scholar

[16] Liu R, Zhao B, Lin X Q. Experimental observation of evanescent-wave amplification and propagation in microwave regime. Appl Phys Lett, 2006, 89: 221919 CrossRef ADS Google Scholar

[17] Liu R, Zhao B, Lin X Q. Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model. Phys Rev B, 2007, 75: 125118 CrossRef ADS Google Scholar

[18] Yao Y H, Cui T J, Cheng Q. Realization of a super waveguide for high-power-density generation and transmission using right- and left-handed transmission-line circuits. Phys Rev E, 2007, 76: 036602 CrossRef ADS Google Scholar

[19] Xian Qi Lin , Ruo Peng Liu , Xin Mi Yang . Arbitrarily dual-band components using simplified structures of conventional CRLH TLs. IEEE Trans Microwave Theor Techn, 2006, 54: 2902-2909 CrossRef ADS Google Scholar

[20] Lin X Q, Ma H F, Bao D. Design and Analysis of Super-Wide Bandpass Filters Using a Novel Compact Meta-Structure. IEEE Trans Microwave Theor Techn, 2007, 55: 747-753 CrossRef ADS Google Scholar

[21] Pendry J B. Controlling Electromagnetic Fields. Science, 2006, 312: 1780-1782 CrossRef ADS Google Scholar

[22] Leonhardt U. Optical Conformal Mapping. Science, 2006, 312: 1777-1780 CrossRef ADS Google Scholar

[23] Schurig D, Mock J J, Justice B J. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 2006, 314: 977-980 CrossRef ADS Google Scholar

[24] Xiang Jiang W, Cui T J, Yu G X. Arbitrarily elliptical-cylindrical invisible cloaking. J Phys D-Appl Phys, 2008, 41: 085504 CrossRef ADS Google Scholar

[25] Jiang W X, Chin J Y, Li Z. Analytical design of conformally invisible cloaks for arbitrarily shaped objects. Phys Rev E, 2008, 77: 066607 CrossRef ADS Google Scholar

[26] Jiang W X, Cui T J, Yang X M. Invisibility cloak without singularity. Appl Phys Lett, 2008, 93: 194102 CrossRef ADS arXiv Google Scholar

[27] Jiang W X, Cui T J, Cheng Q. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl Phys Lett, 2008, 92: 264101 CrossRef ADS Google Scholar

[28] Simovski C R, Belov P A, Sailing He P A. Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators. IEEE Trans Antennas Propagat, 2003, 51: 2582-2591 CrossRef ADS arXiv Google Scholar

[29] Schurig D, Mock J J, Smith D R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett, 2006, 88: 041109 CrossRef ADS Google Scholar

[30] Liu R, Cui T J, Huang D. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys Rev E, 2007, 76: 026606 CrossRef ADS Google Scholar

[31] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper). J Opt Soc Am B, 2006, 23: 391-403 CrossRef ADS Google Scholar

[32] Smith D R, Schultz S, Marko? P. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B, 2002, 65: 195104 CrossRef ADS arXiv Google Scholar

[33] Cui T J, Smith D, Liu R. Metamaterials — Theory, Design, and Applications. Berlin: Springer, 2009. Google Scholar

[34] Liu R, Ji C, Mock J J. Broadband Ground-Plane Cloak. Science, 2009, 323: 366-369 CrossRef ADS Google Scholar

[35] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 2008, 101: 203901. Google Scholar

[36] Ma H F, Jiang W X, Yang X M, Zhou X Y, and Cui T J. Compact-sized and broadband carpet cloak and free-space cloak. Optical Express, 2009, 17: 19947--19959. Google Scholar

[37] Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 2010, 1: 21 CrossRef ADS Google Scholar

[38] Ergin T, Stenger N, Brenner P. Three-Dimensional Invisibility Cloak at Optical Wavelengths. Science, 2010, 328: 337-339 CrossRef ADS Google Scholar

[39] Yang F, Mei Z L, Jin T Y. dc Electric Invisibility Cloak. Phys Rev Lett, 2012, 109: 053902 CrossRef ADS Google Scholar

[40] Yang F, Mei Z L, Yang X Y. A Negative Conductivity Material Makes a dc Invisibility Cloak Hide an Object at a Distance. Adv Funct Mater, 2013, 23: 4306-4310 CrossRef Google Scholar

[41] Ma Q, Mei Z L, Zhu S K. Experiments on Active Cloaking and Illusion for Laplace Equation. Phys Rev Lett, 2013, 111: 173901 CrossRef ADS Google Scholar

[42] Cheng Q, Cui T J, Jiang W X. An omnidirectional electromagnetic absorber made of metamaterials. New J Phys, 2010, 12: 063006 CrossRef ADS Google Scholar

[43] Narimanov E E, Kildishev A V. Optical black hole: Broadband omnidirectional light absorber. Appl Phys Lett, 2009, 95: 041106 CrossRef ADS Google Scholar

[44] Lai Y, Ng J, Chen H Y. Illusion Optics: The Optical Transformation of an Object into Another Object. Phys Rev Lett, 2009, 102: 253902 CrossRef ADS arXiv Google Scholar

[45] Jiang W X, Cui T J, Yang X M. Shrinking an arbitrary object as one desires using metamaterials. Appl Phys Lett, 2011, 98: 204101 CrossRef ADS Google Scholar

[46] Jiang W X, Cui T J. Radar illusion via metamaterials. Phys Rev E, 2011, 83: 026601 CrossRef ADS Google Scholar

[47] Jiang W X, Qiu C W, Han T. Creation of Ghost Illusions Using Wave Dynamics in Metamaterials. Adv Funct Mater, 2013, 23: 4028-4034 CrossRef Google Scholar

[48] Liu R, Cheng Q, Hand T. Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Phys Rev Lett, 2008, 100: 023903 CrossRef ADS Google Scholar

[49] Silveirinha M, Engheta N. Phys Rev Lett, 2006, 97: 157403 CrossRef ADS Google Scholar

[50] Cheng Q, Liu R, Huang D. Circuit verification of tunneling effect in zero permittivity medium. Appl Phys Lett, 2007, 91: 234105 CrossRef ADS Google Scholar

[51] Cheng Q, Jiang W X, Cui T J. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials. J Phys D-Appl Phys, 2010, 43: 335406 CrossRef ADS Google Scholar

[52] Cheng Q, Jiang W X, Cui T J. Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials. Phys Rev Lett, 2012, 108: 213903 CrossRef ADS Google Scholar

[53] Bin Zhou , Tie Jun Cui . Directivity Enhancement to Vivaldi Antennas Using Compactly Anisotropic Zero-Index Metamaterials. Antennas Wirel Propag Lett, 2011, 10: 326-329 CrossRef ADS Google Scholar

[54] Yuan L H, Tang W X, Li H. Three-Dimensional Anisotropic Zero-Index Lenses. IEEE Trans Antennas Propagat, 2014, 62: 4135-4142 CrossRef ADS Google Scholar

[55] Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun, 2010, 1: 124 CrossRef ADS Google Scholar

[56] Jiang W X, Qiu C W, Han T C. Broadband All-Dielectric Magnifying Lens for Far-Field High-Resolution Imaging. Adv Mater, 2013, 25: 6963-6968 CrossRef Google Scholar

[57] Jiang W X, Ge S, Han T. Shaping 3D Path of Electromagnetic Waves Using Gradient-Refractive-Index Metamaterials. Adv Sci, 2016, 3: 1600022 CrossRef Google Scholar

[58] Chen X, Feng Ma H, Ying Zou X. Three-dimensional broadband and high-directivity lens antenna made of metamaterials. J Appl Phys, 2011, 110: 044904 CrossRef ADS Google Scholar

[59] Zhou X Y, Zou X Y, Yang Y. Three-dimensional large-aperture lens antennas with gradient refractive index. Sci China Inf Sci, 2013, 56: 1-12 CrossRef Google Scholar

[60] Qi M Q, Tang W X, Xu H X. Tailoring Radiation Patterns in Broadband With Controllable Aperture Field Using Metamaterials. IEEE Trans Antennas Propagat, 2013, 61: 5792-5798 CrossRef ADS Google Scholar

[61] Qi M Q, Tang W X, Ma H F. Suppressing Side-Lobe Radiations of Horn Antenna by Loading Metamaterial Lens. Sci Rep, 2015, 5: 9113 CrossRef ADS Google Scholar

[62] Qing Qi M, Tang W X, Cui T J. A Broadband Bessel Beam Launcher Using Metamaterial Lens. Sci Rep, 2015, 5: 11732 CrossRef ADS Google Scholar

[63] Yang X M, Zhou X Y, Cheng Q. Diffuse reflections by randomly gradient index metamaterials. Opt Lett, 2010, 35: 808-810 CrossRef ADS Google Scholar

[64] Wang D, Liu Z G, Zhao J. Accurate Design of Low Backscattering Metasurface Using Iterative Fourier Transform Algorithm. Sci Rep, 2017, 7: 11346 CrossRef ADS Google Scholar

[65] Dong D S, Yang J, Cheng Q. Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions. Adv Opt Mater, 2015, 3: 1405-1410 CrossRef Google Scholar

[66] Zhao J, Cheng Q, Wang T Q. Fast design of broadband terahertz diffusion metasurfaces. Opt Express, 2017, 25: 1050-1061 CrossRef ADS Google Scholar

[67] Zhao J, Cheng Q, Wang T Q. Fast design of broadband terahertz diffusion metasurfaces. Opt Express, 2017, 25: 1050-1061 CrossRef ADS Google Scholar

[68] Zhang C, Cheng Q, Yang J. Broadband metamaterial for optical transparency and microwave absorption. Appl Phys Lett, 2017, 110: 143511 CrossRef ADS Google Scholar

[69] Zhao J, Zhang C, Cheng Q. An optically transparent metasurface for broadband microwave antireflection. Appl Phys Lett, 2018, 112: 073504 CrossRef ADS Google Scholar

[70] Zhang C, Yang J, Cao W. Transparently curved metamaterial with broadband millimeter wave absorption. Photon Res, 2019, 7: 478-485 CrossRef Google Scholar

[71] Pendry J B. Mimicking Surface Plasmons with Structured Surfaces. Science, 2004, 305: 847-848 CrossRef ADS Google Scholar

[72] Jin Zhou Y, Jiang Q, Jun Cui T. Bidirectional bending splitter of designer surface plasmons. Appl Phys Lett, 2011, 99: 111904 CrossRef ADS Google Scholar

[73] Jin Zhou Y, Jun Cui T. Broadband slow-wave systems of subwavelength thickness excited by a metal wire. Appl Phys Lett, 2011, 99: 101906 CrossRef ADS Google Scholar

[74] Zhou Y J, Cui T J. Multi-directional surface-wave splitters. Applied Physics Letters, 2011, 98: 221901. Google Scholar

[75] Cui T J, Shen X. Passive plasmonic components based on plasmonic metamaterials. SPIE Photonics Europe Symposium, Brussel, Belgium, 2012. 16. Google Scholar

[76] Shen X, Cui T J. Terahertz plasmonic metamaterial waveguides and devices. In: Proceedings of the 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics, Paris, 2012. 19. Google Scholar

[77] Shen X, Jun Cui T. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl Phys Lett, 2013, 102: 211909 CrossRef ADS Google Scholar

[78] Shen X, Cui T J, Martin-Cano D. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 2013, 110: 40-45 CrossRef ADS Google Scholar

[79] Ma H F, Shen X, Cheng Q. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev, 2014, 8: 146-151 CrossRef ADS Google Scholar

[80] Liao Z, Zhao J, Pan B C. Broadband transition between microstrip line and conformal surface plasmon waveguide. J Phys D-Appl Phys, 2014, 47: 315103 CrossRef ADS Google Scholar

[81] Zhang Q, Zhang H C, Wu H. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters. Sci Rep, 2015, 5: 16531 CrossRef ADS Google Scholar

[82] Gao X, Zhou L, Cui T J. Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial. Sci Rep, 2015, 5: 9250 CrossRef ADS Google Scholar

[83] Gao X, Shi J H, Ma H F. Dual-band spoof surface plasmon polaritons based on composite-periodic gratings. J Phys D-Appl Phys, 2012, 45: 505104 CrossRef ADS Google Scholar

[84] Gao X, Zhou L, Yu X Y. Ultra-wideband surface plasmonic Y-splitter. Opt Express, 2015, 23: 23270-23277 CrossRef ADS Google Scholar

[85] Gao X, Hui Shi J, Shen X. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett, 2013, 102: 151912 CrossRef ADS Google Scholar

[86] Gao X, Zhou L, Liao Z. An ultra-wideband surface plasmonic filter in microwave frequency. Appl Phys Lett, 2014, 104: 191603 CrossRef ADS Google Scholar

[87] Yang Y, Shen X, Zhao P. Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies. Opt Express, 2015, 23: 7031-7037 CrossRef ADS Google Scholar

[88] Zhang H C, Cui T J, Zhang Q. Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons. ACS Photonics, 2015, 2: 1333-1340 CrossRef Google Scholar

[89] Liang Y, Yu H, Zhang H C. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci Rep, 2015, 5: 14853 CrossRef ADS Google Scholar

[90] Liang Y, Yu H, Feng G. An Energy-Efficient and Low-Crosstalk Sub-THz I/O by Surface Plasmonic Polariton Interconnect in CMOS. IEEE Trans Microwave Theor Techn, 2017, 65: 2762-2774 CrossRef ADS Google Scholar

[91] Pors A, Moreno E, Martin-Moreno L. Localized Spoof Plasmons Arise while Texturing Closed Surfaces. Phys Rev Lett, 2012, 108: 223905 CrossRef ADS Google Scholar

[92] Shen X, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev, 2014, 8: 137-145 CrossRef ADS Google Scholar

[93] Liao Z, Luo Y, Fernández-Domínguez A I. High-order localized spoof surface plasmon resonances and experimental verifications. Sci Rep, 2015, 5: 9590 CrossRef ADS arXiv Google Scholar

[94] Huidobro P A, Shen X, Cuerda J. Magnetic Localized Surface Plasmons. Phys Rev X, 2014, 4: 021003 CrossRef ADS Google Scholar

[95] Liao Z, Fernández-Domínguez A I, Zhang J. Homogenous Metamaterial Description of Localized Spoof Plasmons in Spiral Geometries. ACS Photonics, 2016, 3: 1768-1775 CrossRef Google Scholar

[96] Zhang J, Liao Z, Luo Y. Spoof plasmon hybridization. Laser Photonics Rev, 2017, 11: 1600191 CrossRef ADS arXiv Google Scholar

[97] Liao Z, Shen X, Pan B C. Combined System for Efficient Excitation and Capture of LSP Resonances and Flexible Control of SPP Transmissions. ACS Photonics, 2015, 2: 738-743 CrossRef Google Scholar

[98] Zhang H C, Liu S, Shen X. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev, 2015, 9: 83-90 CrossRef ADS Google Scholar

[99] Zhang H C, Fan Y, Guo J. Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials. ACS Photonics, 2016, 3: 139-146 CrossRef Google Scholar

[100] Zhang H C, Cui T J, Xu J. Real-Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial. Adv Mater Technol, 2017, 2: 1600202 CrossRef Google Scholar

[101] Xu J J, Zhang H C, Zhang Q. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl Phys Lett, 2015, 106: 021102 CrossRef ADS Google Scholar

[102] Yin J Y, Zhang H C, Fan Y. Direct Radiations of Surface Plasmon Polariton Waves by Gradient Groove Depth and Flaring Metal Structure. Antennas Wirel Propag Lett, 2016, 15: 865-868 CrossRef ADS Google Scholar

[103] Xu J J, Yin J Y, Zhang H C. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons. Sci Rep, 2016, 6: 22692 CrossRef ADS Google Scholar

[104] Yin J Y, Bao D, Ren J. Endfire Radiations of Spoof Surface Plasmon Polaritons. Antennas Wirel Propag Lett, 2017, 16: 597-600 CrossRef ADS Google Scholar

[105] Xu J J, Jiang X, Zhang H C. Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide. Appl Phys Lett, 2017, 110: 021118 CrossRef ADS Google Scholar

[106] Kong G S, Ma H F, Cai B G. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci Rep, 2016, 6: 29600 CrossRef ADS Google Scholar

[107] Wang M, Ma H F, Tang W X. Leaky-Wave Radiations with Arbitrarily Customizable Polarizations Based on Spoof Surface Plasmon Polaritons. Phys Rev Appl, 2019, 12: 014036 CrossRef ADS Google Scholar

[108] Wang M, Ma H F, Zhang H C. Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line. IEEE Trans Antennas Propagat, 2018, 66: 4449-4457 CrossRef ADS Google Scholar

[109] Wang M, Ma H F, Tang W. A Dual-Band Electronic-Scanning Leaky-Wave Antenna Based on a Corrugated Microstrip Line. IEEE Trans Antennas Propagat, 2019, 67: 3433-3438 CrossRef ADS Google Scholar

[110] Yin J Y, Ren J, Zhang L. Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons (Laser Photonics Rev. 12(3)/2018). Laser Photonics Rev, 2018, 12: 1870020 CrossRef ADS Google Scholar

[111] Wang M, Ma H F, Wu L W. Hybrid Digital Coding Metasurface for Independent Control of Propagating Surface and Spatial Waves. Adv Opt Mater, 2019, 11: 1900478 CrossRef Google Scholar

[112] Zhang H C, Zhang L P, He P H. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci Appl, 2020, 9: 113 CrossRef ADS Google Scholar

[113] Cui T J, Qi M Q, Wan X. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 2014, 3: e218-e218 CrossRef ADS arXiv Google Scholar

[114] Della Giovampaola C, Engheta N. Digital metamaterials. Nat Mater, 2014, 13: 1115-1121 CrossRef ADS arXiv Google Scholar

[115] Gao L H, Cheng Q, Yang J. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci Appl, 2015, 4: e324-e324 CrossRef ADS Google Scholar

[116] Liu S, Cui T J, Xu Q. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl, 2016, 5: e16076 CrossRef ADS Google Scholar

[117] Liu S, Zhang H C, Zhang L. Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. ACS Appl Mater Interfaces, 2017, 9: 21503-21514 CrossRef Google Scholar

[118] Liu S, Zhang L, Yang Q L. Frequency-Dependent Dual-Functional Coding Metasurfaces at Terahertz Frequencies. Adv Opt Mater, 2016, 4: 1965-1973 CrossRef Google Scholar

[119] Cui T J, Liu S, Zhang L. Information metamaterials and metasurfaces. J Mater Chem C, 2017, 5: 3644-3668 CrossRef Google Scholar

[120] Liu S, Cui T J, Zhang L. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Adv Sci, 2016, 3: 1600156 CrossRef Google Scholar

[121] Cui T J, Liu S, Li L L. Information entropy of coding metasurface. Light Sci Appl, 2016, 5: e16172 CrossRef ADS Google Scholar

[122] Wu H, Bai G D, Liu S. Information theory of metasurfaces. Natl Sci Rev, 2020, 7: 561-571 CrossRef Google Scholar

[123] Wu R Y, Shi C B, Liu S. Addition Theorem for Digital Coding Metamaterials. Adv Opt Mater, 2018, 6: 1701236 CrossRef Google Scholar

[124] Zhao J, Yang X, Dai J Y. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev, 2019, 6: 231-238 CrossRef Google Scholar

[125] Dai J Y, Zhao J, Cheng Q. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl, 2018, 7: 90 CrossRef ADS Google Scholar

[126] Zhang L, Chen X Q, Liu S. Space-time-coding digital metasurfaces. Nat Commun, 2018, 9: 4334 CrossRef ADS Google Scholar

[127] Zhang L, Wang Z X, Shao R W. Dynamically Realizing Arbitrary Multi-Bit Programmable Phases Using a 2-Bit Time-Domain Coding Metasurface. IEEE Trans Antennas Propagat, 2020, 68: 2984-2992 CrossRef ADS Google Scholar

[128] Zhang C, Yang J, Yang L X. Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics. Nanophotonics, 2020, 0 CrossRef Google Scholar

[129] Zhang L, Chen X Q, Shao R W. Breaking Reciprocity with Space?Time?Coding Digital Metasurfaces. Adv Mater, 2019, 31: 1904069 CrossRef Google Scholar

[130] Li L, Jun Cui T, Ji W. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun, 2017, 8: 197 CrossRef ADS Google Scholar

[131] Li Y B, Li L L, Xu B B. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging. Sci Rep, 2016, 6: 23731 CrossRef ADS Google Scholar

[132] Li L, Hurtado M, Xu F. A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging. FNT Signal Processing, 2018, 12: 107-199 CrossRef Google Scholar

[133] Cui T J, Liu S, Bai G D. Direct Transmission of Digital Message via Programmable Coding Metasurface. Research, 2019, 2019(e218): 1-12 CrossRef Google Scholar

[134] Wan X, Zhang Q, Yi Chen T. Multichannel direct transmissions of near-field information. Light Sci Appl, 2019, 8: 60 CrossRef ADS Google Scholar

[135] Dai J Y, Tang W K, Zhao J. Wireless Communications through a Simplified Architecture Based on Time?Domain Digital Coding Metasurface. Adv Mater Technol, 2019, 4: 1900044 CrossRef Google Scholar

[136] Tang W, Dai J Y, Chen M. Programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electron Lett, 2019, 55: 417-420 CrossRef ADS arXiv Google Scholar

[137] Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, K.-Wong K, and Cui T J. Programmable metasurfaces: The future of wireless? Electronics Letters, 2019, 55: 360--361. Google Scholar

[138] Dai J Y, Tang W, Yang L X. Realization of Multi-Modulation Schemes for Wireless Communication by Time-Domain Digital Coding Metasurface. IEEE Trans Antennas Propagat, 2020, 68: 1618-1627 CrossRef ADS Google Scholar

[139] Tang W, Chen M Z, Chen X, Dai J Y, Han Y, Renzo M D, Zeng Y, Jin S, Cheng Q, and Cui T J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Transactions on Wireless Communications, accepted, 2020. Google Scholar

[140] Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, and Cui T J. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver. IEEE Wireless Communications, accepted, 2020. Google Scholar

[141] Ma Q, Bai G D, Jing H B. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl, 2019, 8: 98 CrossRef ADS Google Scholar

[142] Ma Q, Hong Q R, Gao X X. Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 2020, 0 CrossRef Google Scholar

[143] Li L, Ruan H, Liu C. Machine-learning reprogrammable metasurface imager. Nat Commun, 2019, 10: 1082 CrossRef ADS Google Scholar

[144] Li L, Shuang Y, Ma Q. Intelligent metasurface imager and recognizer. Light Sci Appl, 2019, 8: 97 CrossRef ADS arXiv Google Scholar

[145] Li H Y, Zhao H T, Wei M L. Intelligent Electromagnetic Sensing with Learnable Data Acquisition and Processing. Patterns, 2020, 1: 100006 CrossRef Google Scholar

[146] Zhang Q, Liu C, Wan X. Machine?Łearning Designs of Anisotropic Digital Coding Metasurfaces. Adv Theor Simul, 2019, 2: 1800132 CrossRef Google Scholar

[147] Qiu T, Shi X, Wang J. Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design. Adv Sci, 2019, 6: 1900128 CrossRef Google Scholar

[148] Cui T J, Tang W X, Yang X M, et al. Metamaterials -- Beyond Crystals, Noncrystals, and Quasicrystals. Boca Raton: CRC Press, 2016. Google Scholar

[149] Cui T J. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves. J Opt, 2017, 19: 084004 CrossRef ADS Google Scholar

[150] Liu S, Cui T J. Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials. Adv Opt Mater, 2017, 5: 1700624 CrossRef Google Scholar

[151] Cui T J. Microwave metamaterials. Natl Sci Rev, 2018, 5: 134-136 CrossRef Google Scholar

[152] Tang W X, Zhang H C, Ma H F. Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies. Adv Opt Mater, 2019, 7: 1800421 CrossRef Google Scholar

[153] Fu X, Cui T J. Recent progress on metamaterials: From effective medium model to real-time information processing system. Prog Quantum Electron, 2019, 67: 100223 CrossRef ADS Google Scholar

[154] Chen T, Tang W, Mu J. Microwave Metamaterials. ANNALEN DER PHYSIK, 2019, 531: 1800445 CrossRef ADS Google Scholar

[155] Ma Q, Cui T J. Information Metamaterials: bridging the physical world and digital world. PhotoniX, 2020, 1: 1 CrossRef Google Scholar

[156] Bao L, Cui T J. Tunable, reconfigurable, and programmable metamaterials. Microw Opt Technol Lett, 2020, 62: 9-32 CrossRef Google Scholar

[157] Wu R, Cui T. Microwave metamaterials: from exotic physics to novel information systems. Front Inform Technol Electron Eng, 2020, 21: 4-26 CrossRef Google Scholar