References
[1]
Veselago
V G.
THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ.
Sov Phys Usp,
1968, 10: 509-514
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ&author=Veselago V G&publication_year=1968&journal=Sov Phys Usp&volume=10&pages=509-514
[2]
Pendry
J B,
Holden
A J,
Stewart
W J.
Extremely Low Frequency Plasmons in Metallic Mesostructures.
Phys Rev Lett,
1996, 76: 4773-4776
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extremely Low Frequency Plasmons in Metallic Mesostructures&author=Pendry J B&author=Holden A J&author=Stewart W J&publication_year=1996&journal=Phys Rev Lett&volume=76&pages=4773-4776
[3]
Pendry
J B,
Holden
A J,
Robbins
D J.
Magnetism from conductors and enhanced nonlinear phenomena.
IEEE Trans Microwave Theor Techn,
1999, 47: 2075-2084
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetism from conductors and enhanced nonlinear phenomena&author=Pendry J B&author=Holden A J&author=Robbins D J&publication_year=1999&journal=IEEE Trans Microwave Theor Techn&volume=47&pages=2075-2084
[4]
Pendry
J B.
Negative Refraction Makes a Perfect Lens.
Phys Rev Lett,
2000, 85: 3966-3969
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negative Refraction Makes a Perfect Lens&author=Pendry J B&publication_year=2000&journal=Phys Rev Lett&volume=85&pages=3966-3969
[5]
Shelby
R A.
Experimental Verification of a Negative Index of Refraction.
Science,
2001, 292: 77-79
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental Verification of a Negative Index of Refraction&author=Shelby R A&publication_year=2001&journal=Science&volume=292&pages=77-79
[6]
Cui
T J,
Kong
J A.
Causality in the propagation of transient electromagnetic waves in a left-handed medium.
Phys Rev B,
2004, 70: 165113
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Causality in the propagation of transient electromagnetic waves in a left-handed medium&author=Cui T J&author=Kong J A&publication_year=2004&journal=Phys Rev B&volume=70&pages=165113
[7]
Cui
T J,
Kong
J A.
Time-domain electromagnetic energy in a frequency-dispersive left-handed medium.
Phys Rev B,
2004, 70: 205106
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-domain electromagnetic energy in a frequency-dispersive left-handed medium&author=Cui T J&author=Kong J A&publication_year=2004&journal=Phys Rev B&volume=70&pages=205106
[8]
Cui
T J,
Cheng
Q,
Lu
W B.
Localization of electromagnetic energy using a left-handed-medium slab.
Phys Rev B,
2005, 71: 045114
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Localization of electromagnetic energy using a left-handed-medium slab&author=Cui T J&author=Cheng Q&author=Lu W B&publication_year=2005&journal=Phys Rev B&volume=71&pages=045114
[9]
Cheng
Q,
Cui
T J.
High-power generation and transmission through a left-handed material.
Phys Rev B,
2005, 72: 113112
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power generation and transmission through a left-handed material&author=Cheng Q&author=Cui T J&publication_year=2005&journal=Phys Rev B&volume=72&pages=113112
[10]
Cheng
Q,
Cui
T J.
Negative refractions in uniaxially anisotropic chiral media.
Phys Rev B,
2006, 73: 113104
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negative refractions in uniaxially anisotropic chiral media&author=Cheng Q&author=Cui T J&publication_year=2006&journal=Phys Rev B&volume=73&pages=113104
[11]
Zhang
C,
Cui
T J.
Negative reflections of electromagnetic waves in a strong chiral medium.
Appl Phys Lett,
2007, 91: 194101
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negative reflections of electromagnetic waves in a strong chiral medium&author=Zhang C&author=Cui T J&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=194101
[12]
Eleftheriades G V, Balmain K G, Negative-Refraction Metamaterials. New York: Wiley, 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Eleftheriades G V, Balmain K G, Negative-Refraction Metamaterials. New York: Wiley, 2005&
[13]
Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004&
[14]
Cui
T J,
Cheng
Q,
Huang
Z Z.
Electromagnetic wave localization using a left-handed transmission-line superlens.
Phys Rev B,
2005, 72: 035112
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electromagnetic wave localization using a left-handed transmission-line superlens&author=Cui T J&author=Cheng Q&author=Huang Z Z&publication_year=2005&journal=Phys Rev B&volume=72&pages=035112
[15]
Cui
T J,
Lin
X Q,
Cheng
Q.
Experiments on evanescent-wave amplification and transmission using metamaterial structures.
Phys Rev B,
2006, 73: 245119
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experiments on evanescent-wave amplification and transmission using metamaterial structures&author=Cui T J&author=Lin X Q&author=Cheng Q&publication_year=2006&journal=Phys Rev B&volume=73&pages=245119
[16]
Liu
R,
Zhao
B,
Lin
X Q.
Experimental observation of evanescent-wave amplification and propagation in microwave regime.
Appl Phys Lett,
2006, 89: 221919
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental observation of evanescent-wave amplification and propagation in microwave regime&author=Liu R&author=Zhao B&author=Lin X Q&publication_year=2006&journal=Appl Phys Lett&volume=89&pages=221919
[17]
Liu
R,
Zhao
B,
Lin
X Q.
Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model.
Phys Rev B,
2007, 75: 125118
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model&author=Liu R&author=Zhao B&author=Lin X Q&publication_year=2007&journal=Phys Rev B&volume=75&pages=125118
[18]
Yao
Y H,
Cui
T J,
Cheng
Q.
Realization of a super waveguide for high-power-density generation and transmission using right- and left-handed transmission-line circuits.
Phys Rev E,
2007, 76: 036602
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of a super waveguide for high-power-density generation and transmission using right- and left-handed transmission-line circuits&author=Yao Y H&author=Cui T J&author=Cheng Q&publication_year=2007&journal=Phys Rev E&volume=76&pages=036602
[19]
Xian Qi Lin
,
Ruo Peng Liu
,
Xin Mi Yang
.
Arbitrarily dual-band components using simplified structures of conventional CRLH TLs.
IEEE Trans Microwave Theor Techn,
2006, 54: 2902-2909
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arbitrarily dual-band components using simplified structures of conventional CRLH TLs&author=Xian Qi Lin &author=Ruo Peng Liu &author=Xin Mi Yang &publication_year=2006&journal=IEEE Trans Microwave Theor Techn&volume=54&pages=2902-2909
[20]
Lin
X Q,
Ma
H F,
Bao
D.
Design and Analysis of Super-Wide Bandpass Filters Using a Novel Compact Meta-Structure.
IEEE Trans Microwave Theor Techn,
2007, 55: 747-753
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design and Analysis of Super-Wide Bandpass Filters Using a Novel Compact Meta-Structure&author=Lin X Q&author=Ma H F&author=Bao D&publication_year=2007&journal=IEEE Trans Microwave Theor Techn&volume=55&pages=747-753
[21]
Pendry
J B.
Controlling Electromagnetic Fields.
Science,
2006, 312: 1780-1782
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Controlling Electromagnetic Fields&author=Pendry J B&publication_year=2006&journal=Science&volume=312&pages=1780-1782
[22]
Leonhardt
U.
Optical Conformal Mapping.
Science,
2006, 312: 1777-1780
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical Conformal Mapping&author=Leonhardt U&publication_year=2006&journal=Science&volume=312&pages=1777-1780
[23]
Schurig
D,
Mock
J J,
Justice
B J.
Metamaterial Electromagnetic Cloak at Microwave Frequencies.
Science,
2006, 314: 977-980
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metamaterial Electromagnetic Cloak at Microwave Frequencies&author=Schurig D&author=Mock J J&author=Justice B J&publication_year=2006&journal=Science&volume=314&pages=977-980
[24]
Xiang Jiang
W,
Cui
T J,
Yu
G X.
Arbitrarily elliptical-cylindrical invisible cloaking.
J Phys D-Appl Phys,
2008, 41: 085504
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arbitrarily elliptical-cylindrical invisible cloaking&author=Xiang Jiang W&author=Cui T J&author=Yu G X&publication_year=2008&journal=J Phys D-Appl Phys&volume=41&pages=085504
[25]
Jiang
W X,
Chin
J Y,
Li
Z.
Analytical design of conformally invisible cloaks for arbitrarily shaped objects.
Phys Rev E,
2008, 77: 066607
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analytical design of conformally invisible cloaks for arbitrarily shaped objects&author=Jiang W X&author=Chin J Y&author=Li Z&publication_year=2008&journal=Phys Rev E&volume=77&pages=066607
[26]
Jiang
W X,
Cui
T J,
Yang
X M.
Invisibility cloak without singularity.
Appl Phys Lett,
2008, 93: 194102
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Invisibility cloak without singularity&author=Jiang W X&author=Cui T J&author=Yang X M&publication_year=2008&journal=Appl Phys Lett&volume=93&pages=194102
[27]
Jiang
W X,
Cui
T J,
Cheng
Q.
Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces.
Appl Phys Lett,
2008, 92: 264101
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces&author=Jiang W X&author=Cui T J&author=Cheng Q&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=264101
[28]
Simovski
C R,
Belov
P A,
Sailing He
P A.
Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators.
IEEE Trans Antennas Propagat,
2003, 51: 2582-2591
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators&author=Simovski C R&author=Belov P A&author=Sailing He P A&publication_year=2003&journal=IEEE Trans Antennas Propagat&volume=51&pages=2582-2591
[29]
Schurig
D,
Mock
J J,
Smith
D R.
Electric-field-coupled resonators for negative permittivity metamaterials.
Appl Phys Lett,
2006, 88: 041109
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electric-field-coupled resonators for negative permittivity metamaterials&author=Schurig D&author=Mock J J&author=Smith D R&publication_year=2006&journal=Appl Phys Lett&volume=88&pages=041109
[30]
Liu
R,
Cui
T J,
Huang
D.
Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory.
Phys Rev E,
2007, 76: 026606
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory&author=Liu R&author=Cui T J&author=Huang D&publication_year=2007&journal=Phys Rev E&volume=76&pages=026606
[31]
Smith
D R,
Pendry
J B.
Homogenization of metamaterials by field averaging (invited paper).
J Opt Soc Am B,
2006, 23: 391-403
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Homogenization of metamaterials by field averaging (invited paper)&author=Smith D R&author=Pendry J B&publication_year=2006&journal=J Opt Soc Am B&volume=23&pages=391-403
[32]
Smith
D R,
Schultz
S,
Marko?
P.
Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients.
Phys Rev B,
2002, 65: 195104
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients&author=Smith D R&author=Schultz S&author=Marko? P&publication_year=2002&journal=Phys Rev B&volume=65&pages=195104
[33]
Cui T J, Smith D, Liu R. Metamaterials — Theory, Design, and Applications. Berlin: Springer, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cui T J, Smith D, Liu R. Metamaterials — Theory, Design, and Applications. Berlin: Springer, 2009&
[34]
Liu
R,
Ji
C,
Mock
J J.
Broadband Ground-Plane Cloak.
Science,
2009, 323: 366-369
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband Ground-Plane Cloak&author=Liu R&author=Ji C&author=Mock J J&publication_year=2009&journal=Science&volume=323&pages=366-369
[35]
Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 2008, 101: 203901.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 2008, 101: 203901&
[36]
Ma H F, Jiang W X, Yang X M, Zhou X Y, and Cui T J. Compact-sized and broadband carpet cloak and free-space cloak. Optical Express, 2009, 17: 19947--19959.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma H F, Jiang W X, Yang X M, Zhou X Y, and Cui T J. Compact-sized and broadband carpet cloak and free-space cloak. Optical Express, 2009, 17: 19947--19959&
[37]
Ma
H F,
Cui
T J.
Three-dimensional broadband ground-plane cloak made of metamaterials.
Nat Commun,
2010, 1: 21
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional broadband ground-plane cloak made of metamaterials&author=Ma H F&author=Cui T J&publication_year=2010&journal=Nat Commun&volume=1&pages=21
[38]
Ergin
T,
Stenger
N,
Brenner
P.
Three-Dimensional Invisibility Cloak at Optical Wavelengths.
Science,
2010, 328: 337-339
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-Dimensional Invisibility Cloak at Optical Wavelengths&author=Ergin T&author=Stenger N&author=Brenner P&publication_year=2010&journal=Science&volume=328&pages=337-339
[39]
Yang
F,
Mei
Z L,
Jin
T Y.
dc Electric Invisibility Cloak.
Phys Rev Lett,
2012, 109: 053902
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=dc Electric Invisibility Cloak&author=Yang F&author=Mei Z L&author=Jin T Y&publication_year=2012&journal=Phys Rev Lett&volume=109&pages=053902
[40]
Yang
F,
Mei
Z L,
Yang
X Y.
A Negative Conductivity Material Makes a dc Invisibility Cloak Hide an Object at a Distance.
Adv Funct Mater,
2013, 23: 4306-4310
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Negative Conductivity Material Makes a dc Invisibility Cloak Hide an Object at a Distance&author=Yang F&author=Mei Z L&author=Yang X Y&publication_year=2013&journal=Adv Funct Mater&volume=23&pages=4306-4310
[41]
Ma
Q,
Mei
Z L,
Zhu
S K.
Experiments on Active Cloaking and Illusion for Laplace Equation.
Phys Rev Lett,
2013, 111: 173901
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experiments on Active Cloaking and Illusion for Laplace Equation&author=Ma Q&author=Mei Z L&author=Zhu S K&publication_year=2013&journal=Phys Rev Lett&volume=111&pages=173901
[42]
Cheng
Q,
Cui
T J,
Jiang
W X.
An omnidirectional electromagnetic absorber made of metamaterials.
New J Phys,
2010, 12: 063006
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An omnidirectional electromagnetic absorber made of metamaterials&author=Cheng Q&author=Cui T J&author=Jiang W X&publication_year=2010&journal=New J Phys&volume=12&pages=063006
[43]
Narimanov
E E,
Kildishev
A V.
Optical black hole: Broadband omnidirectional light absorber.
Appl Phys Lett,
2009, 95: 041106
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical black hole: Broadband omnidirectional light absorber&author=Narimanov E E&author=Kildishev A V&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=041106
[44]
Lai
Y,
Ng
J,
Chen
H Y.
Illusion Optics: The Optical Transformation of an Object into Another Object.
Phys Rev Lett,
2009, 102: 253902
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Illusion Optics: The Optical Transformation of an Object into Another Object&author=Lai Y&author=Ng J&author=Chen H Y&publication_year=2009&journal=Phys Rev Lett&volume=102&pages=253902
[45]
Jiang
W X,
Cui
T J,
Yang
X M.
Shrinking an arbitrary object as one desires using metamaterials.
Appl Phys Lett,
2011, 98: 204101
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shrinking an arbitrary object as one desires using metamaterials&author=Jiang W X&author=Cui T J&author=Yang X M&publication_year=2011&journal=Appl Phys Lett&volume=98&pages=204101
[46]
Jiang
W X,
Cui
T J.
Radar illusion via metamaterials.
Phys Rev E,
2011, 83: 026601
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Radar illusion via metamaterials&author=Jiang W X&author=Cui T J&publication_year=2011&journal=Phys Rev E&volume=83&pages=026601
[47]
Jiang
W X,
Qiu
C W,
Han
T.
Creation of Ghost Illusions Using Wave Dynamics in Metamaterials.
Adv Funct Mater,
2013, 23: 4028-4034
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Creation of Ghost Illusions Using Wave Dynamics in Metamaterials&author=Jiang W X&author=Qiu C W&author=Han T&publication_year=2013&journal=Adv Funct Mater&volume=23&pages=4028-4034
[48]
Liu
R,
Cheng
Q,
Hand
T.
Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies.
Phys Rev Lett,
2008, 100: 023903
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies&author=Liu R&author=Cheng Q&author=Hand T&publication_year=2008&journal=Phys Rev Lett&volume=100&pages=023903
[49]
Silveirinha
M,
Engheta
N.
Phys Rev Lett,
2006, 97: 157403
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?author=Silveirinha M&author=Engheta N&publication_year=2006&journal=Phys Rev Lett&volume=97&pages=157403
[50]
Cheng
Q,
Liu
R,
Huang
D.
Circuit verification of tunneling effect in zero permittivity medium.
Appl Phys Lett,
2007, 91: 234105
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Circuit verification of tunneling effect in zero permittivity medium&author=Cheng Q&author=Liu R&author=Huang D&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=234105
[51]
Cheng
Q,
Jiang
W X,
Cui
T J.
Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials.
J Phys D-Appl Phys,
2010, 43: 335406
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials&author=Cheng Q&author=Jiang W X&author=Cui T J&publication_year=2010&journal=J Phys D-Appl Phys&volume=43&pages=335406
[52]
Cheng
Q,
Jiang
W X,
Cui
T J.
Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials.
Phys Rev Lett,
2012, 108: 213903
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials&author=Cheng Q&author=Jiang W X&author=Cui T J&publication_year=2012&journal=Phys Rev Lett&volume=108&pages=213903
[53]
Bin Zhou
,
Tie Jun Cui
.
Directivity Enhancement to Vivaldi Antennas Using Compactly Anisotropic Zero-Index Metamaterials.
Antennas Wirel Propag Lett,
2011, 10: 326-329
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Directivity Enhancement to Vivaldi Antennas Using Compactly Anisotropic Zero-Index Metamaterials&author=Bin Zhou &author=Tie Jun Cui &publication_year=2011&journal=Antennas Wirel Propag Lett&volume=10&pages=326-329
[54]
Yuan
L H,
Tang
W X,
Li
H.
Three-Dimensional Anisotropic Zero-Index Lenses.
IEEE Trans Antennas Propagat,
2014, 62: 4135-4142
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-Dimensional Anisotropic Zero-Index Lenses&author=Yuan L H&author=Tang W X&author=Li H&publication_year=2014&journal=IEEE Trans Antennas Propagat&volume=62&pages=4135-4142
[55]
Ma
H F,
Cui
T J.
Three-dimensional broadband and broad-angle transformation-optics lens.
Nat Commun,
2010, 1: 124
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional broadband and broad-angle transformation-optics lens&author=Ma H F&author=Cui T J&publication_year=2010&journal=Nat Commun&volume=1&pages=124
[56]
Jiang
W X,
Qiu
C W,
Han
T C.
Broadband All-Dielectric Magnifying Lens for Far-Field High-Resolution Imaging.
Adv Mater,
2013, 25: 6963-6968
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband All-Dielectric Magnifying Lens for Far-Field High-Resolution Imaging&author=Jiang W X&author=Qiu C W&author=Han T C&publication_year=2013&journal=Adv Mater&volume=25&pages=6963-6968
[57]
Jiang
W X,
Ge
S,
Han
T.
Shaping 3D Path of Electromagnetic Waves Using Gradient-Refractive-Index Metamaterials.
Adv Sci,
2016, 3: 1600022
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shaping 3D Path of Electromagnetic Waves Using Gradient-Refractive-Index Metamaterials&author=Jiang W X&author=Ge S&author=Han T&publication_year=2016&journal=Adv Sci&volume=3&pages=1600022
[58]
Chen
X,
Feng Ma
H,
Ying Zou
X.
Three-dimensional broadband and high-directivity lens antenna made of metamaterials.
J Appl Phys,
2011, 110: 044904
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional broadband and high-directivity lens antenna made of metamaterials&author=Chen X&author=Feng Ma H&author=Ying Zou X&publication_year=2011&journal=J Appl Phys&volume=110&pages=044904
[59]
Zhou
X Y,
Zou
X Y,
Yang
Y.
Three-dimensional large-aperture lens antennas with gradient refractive index.
Sci China Inf Sci,
2013, 56: 1-12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional large-aperture lens antennas with gradient refractive index&author=Zhou X Y&author=Zou X Y&author=Yang Y&publication_year=2013&journal=Sci China Inf Sci&volume=56&pages=1-12
[60]
Qi
M Q,
Tang
W X,
Xu
H X.
Tailoring Radiation Patterns in Broadband With Controllable Aperture Field Using Metamaterials.
IEEE Trans Antennas Propagat,
2013, 61: 5792-5798
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tailoring Radiation Patterns in Broadband With Controllable Aperture Field Using Metamaterials&author=Qi M Q&author=Tang W X&author=Xu H X&publication_year=2013&journal=IEEE Trans Antennas Propagat&volume=61&pages=5792-5798
[61]
Qi
M Q,
Tang
W X,
Ma
H F.
Suppressing Side-Lobe Radiations of Horn Antenna by Loading Metamaterial Lens.
Sci Rep,
2015, 5: 9113
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suppressing Side-Lobe Radiations of Horn Antenna by Loading Metamaterial Lens&author=Qi M Q&author=Tang W X&author=Ma H F&publication_year=2015&journal=Sci Rep&volume=5&pages=9113
[62]
Qing Qi
M,
Tang
W X,
Cui
T J.
A Broadband Bessel Beam Launcher Using Metamaterial Lens.
Sci Rep,
2015, 5: 11732
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Broadband Bessel Beam Launcher Using Metamaterial Lens&author=Qing Qi M&author=Tang W X&author=Cui T J&publication_year=2015&journal=Sci Rep&volume=5&pages=11732
[63]
Yang
X M,
Zhou
X Y,
Cheng
Q.
Diffuse reflections by randomly gradient index metamaterials.
Opt Lett,
2010, 35: 808-810
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diffuse reflections by randomly gradient index metamaterials&author=Yang X M&author=Zhou X Y&author=Cheng Q&publication_year=2010&journal=Opt Lett&volume=35&pages=808-810
[64]
Wang
D,
Liu
Z G,
Zhao
J.
Accurate Design of Low Backscattering Metasurface Using Iterative Fourier Transform Algorithm.
Sci Rep,
2017, 7: 11346
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accurate Design of Low Backscattering Metasurface Using Iterative Fourier Transform Algorithm&author=Wang D&author=Liu Z G&author=Zhao J&publication_year=2017&journal=Sci Rep&volume=7&pages=11346
[65]
Dong
D S,
Yang
J,
Cheng
Q.
Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions.
Adv Opt Mater,
2015, 3: 1405-1410
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions&author=Dong D S&author=Yang J&author=Cheng Q&publication_year=2015&journal=Adv Opt Mater&volume=3&pages=1405-1410
[66]
Zhao
J,
Cheng
Q,
Wang
T Q.
Fast design of broadband terahertz diffusion metasurfaces.
Opt Express,
2017, 25: 1050-1061
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fast design of broadband terahertz diffusion metasurfaces&author=Zhao J&author=Cheng Q&author=Wang T Q&publication_year=2017&journal=Opt Express&volume=25&pages=1050-1061
[67]
Zhao
J,
Cheng
Q,
Wang
T Q.
Fast design of broadband terahertz diffusion metasurfaces.
Opt Express,
2017, 25: 1050-1061
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fast design of broadband terahertz diffusion metasurfaces&author=Zhao J&author=Cheng Q&author=Wang T Q&publication_year=2017&journal=Opt Express&volume=25&pages=1050-1061
[68]
Zhang
C,
Cheng
Q,
Yang
J.
Broadband metamaterial for optical transparency and microwave absorption.
Appl Phys Lett,
2017, 110: 143511
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband metamaterial for optical transparency and microwave absorption&author=Zhang C&author=Cheng Q&author=Yang J&publication_year=2017&journal=Appl Phys Lett&volume=110&pages=143511
[69]
Zhao
J,
Zhang
C,
Cheng
Q.
An optically transparent metasurface for broadband microwave antireflection.
Appl Phys Lett,
2018, 112: 073504
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An optically transparent metasurface for broadband microwave antireflection&author=Zhao J&author=Zhang C&author=Cheng Q&publication_year=2018&journal=Appl Phys Lett&volume=112&pages=073504
[70]
Zhang
C,
Yang
J,
Cao
W.
Transparently curved metamaterial with broadband millimeter wave absorption.
Photon Res,
2019, 7: 478-485
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transparently curved metamaterial with broadband millimeter wave absorption&author=Zhang C&author=Yang J&author=Cao W&publication_year=2019&journal=Photon Res&volume=7&pages=478-485
[71]
Pendry
J B.
Mimicking Surface Plasmons with Structured Surfaces.
Science,
2004, 305: 847-848
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mimicking Surface Plasmons with Structured Surfaces&author=Pendry J B&publication_year=2004&journal=Science&volume=305&pages=847-848
[72]
Jin Zhou
Y,
Jiang
Q,
Jun Cui
T.
Bidirectional bending splitter of designer surface plasmons.
Appl Phys Lett,
2011, 99: 111904
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bidirectional bending splitter of designer surface plasmons&author=Jin Zhou Y&author=Jiang Q&author=Jun Cui T&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=111904
[73]
Jin Zhou
Y,
Jun Cui
T.
Broadband slow-wave systems of subwavelength thickness excited by a metal wire.
Appl Phys Lett,
2011, 99: 101906
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband slow-wave systems of subwavelength thickness excited by a metal wire&author=Jin Zhou Y&author=Jun Cui T&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=101906
[74]
Zhou Y J, Cui T J. Multi-directional surface-wave splitters. Applied Physics Letters, 2011, 98: 221901.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou Y J, Cui T J. Multi-directional surface-wave splitters. Applied Physics Letters, 2011, 98: 221901&
[75]
Cui T J, Shen X. Passive plasmonic components based on plasmonic metamaterials. SPIE Photonics Europe Symposium, Brussel, Belgium, 2012. 16.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cui T J, Shen X. Passive plasmonic components based on plasmonic metamaterials. SPIE Photonics Europe Symposium, Brussel, Belgium, 2012. 16&
[76]
Shen X, Cui T J. Terahertz plasmonic metamaterial waveguides and devices. In: Proceedings of the 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics, Paris, 2012. 19.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shen X, Cui T J. Terahertz plasmonic metamaterial waveguides and devices. In: Proceedings of the 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics, Paris, 2012. 19&
[77]
Shen
X,
Jun Cui
T.
Planar plasmonic metamaterial on a thin film with nearly zero thickness.
Appl Phys Lett,
2013, 102: 211909
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Planar plasmonic metamaterial on a thin film with nearly zero thickness&author=Shen X&author=Jun Cui T&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=211909
[78]
Shen
X,
Cui
T J,
Martin-Cano
D.
Conformal surface plasmons propagating on ultrathin and flexible films.
Proc Natl Acad Sci USA,
2013, 110: 40-45
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conformal surface plasmons propagating on ultrathin and flexible films&author=Shen X&author=Cui T J&author=Martin-Cano D&publication_year=2013&journal=Proc Natl Acad Sci USA&volume=110&pages=40-45
[79]
Ma
H F,
Shen
X,
Cheng
Q.
Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons.
Laser Photonics Rev,
2014, 8: 146-151
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons&author=Ma H F&author=Shen X&author=Cheng Q&publication_year=2014&journal=Laser Photonics Rev&volume=8&pages=146-151
[80]
Liao
Z,
Zhao
J,
Pan
B C.
Broadband transition between microstrip line and conformal surface plasmon waveguide.
J Phys D-Appl Phys,
2014, 47: 315103
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband transition between microstrip line and conformal surface plasmon waveguide&author=Liao Z&author=Zhao J&author=Pan B C&publication_year=2014&journal=J Phys D-Appl Phys&volume=47&pages=315103
[81]
Zhang
Q,
Zhang
H C,
Wu
H.
A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.
Sci Rep,
2015, 5: 16531
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters&author=Zhang Q&author=Zhang H C&author=Wu H&publication_year=2015&journal=Sci Rep&volume=5&pages=16531
[82]
Gao
X,
Zhou
L,
Cui
T J.
Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial.
Sci Rep,
2015, 5: 9250
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial&author=Gao X&author=Zhou L&author=Cui T J&publication_year=2015&journal=Sci Rep&volume=5&pages=9250
[83]
Gao
X,
Shi
J H,
Ma
H F.
Dual-band spoof surface plasmon polaritons based on composite-periodic gratings.
J Phys D-Appl Phys,
2012, 45: 505104
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dual-band spoof surface plasmon polaritons based on composite-periodic gratings&author=Gao X&author=Shi J H&author=Ma H F&publication_year=2012&journal=J Phys D-Appl Phys&volume=45&pages=505104
[84]
Gao
X,
Zhou
L,
Yu
X Y.
Ultra-wideband surface plasmonic Y-splitter.
Opt Express,
2015, 23: 23270-23277
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-wideband surface plasmonic Y-splitter&author=Gao X&author=Zhou L&author=Yu X Y&publication_year=2015&journal=Opt Express&volume=23&pages=23270-23277
[85]
Gao
X,
Hui Shi
J,
Shen
X.
Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies.
Appl Phys Lett,
2013, 102: 151912
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies&author=Gao X&author=Hui Shi J&author=Shen X&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=151912
[86]
Gao
X,
Zhou
L,
Liao
Z.
An ultra-wideband surface plasmonic filter in microwave frequency.
Appl Phys Lett,
2014, 104: 191603
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An ultra-wideband surface plasmonic filter in microwave frequency&author=Gao X&author=Zhou L&author=Liao Z&publication_year=2014&journal=Appl Phys Lett&volume=104&pages=191603
[87]
Yang
Y,
Shen
X,
Zhao
P.
Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies.
Opt Express,
2015, 23: 7031-7037
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies&author=Yang Y&author=Shen X&author=Zhao P&publication_year=2015&journal=Opt Express&volume=23&pages=7031-7037
[88]
Zhang
H C,
Cui
T J,
Zhang
Q.
Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons.
ACS Photonics,
2015, 2: 1333-1340
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons&author=Zhang H C&author=Cui T J&author=Zhang Q&publication_year=2015&journal=ACS Photonics&volume=2&pages=1333-1340
[89]
Liang
Y,
Yu
H,
Zhang
H C.
On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS.
Sci Rep,
2015, 5: 14853
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS&author=Liang Y&author=Yu H&author=Zhang H C&publication_year=2015&journal=Sci Rep&volume=5&pages=14853
[90]
Liang
Y,
Yu
H,
Feng
G.
An Energy-Efficient and Low-Crosstalk Sub-THz I/O by Surface Plasmonic Polariton Interconnect in CMOS.
IEEE Trans Microwave Theor Techn,
2017, 65: 2762-2774
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Energy-Efficient and Low-Crosstalk Sub-THz I/O by Surface Plasmonic Polariton Interconnect in CMOS&author=Liang Y&author=Yu H&author=Feng G&publication_year=2017&journal=IEEE Trans Microwave Theor Techn&volume=65&pages=2762-2774
[91]
Pors
A,
Moreno
E,
Martin-Moreno
L.
Localized Spoof Plasmons Arise while Texturing Closed Surfaces.
Phys Rev Lett,
2012, 108: 223905
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Localized Spoof Plasmons Arise while Texturing Closed Surfaces&author=Pors A&author=Moreno E&author=Martin-Moreno L&publication_year=2012&journal=Phys Rev Lett&volume=108&pages=223905
[92]
Shen
X,
Cui
T J.
Ultrathin plasmonic metamaterial for spoof localized surface plasmons.
Laser Photonics Rev,
2014, 8: 137-145
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin plasmonic metamaterial for spoof localized surface plasmons&author=Shen X&author=Cui T J&publication_year=2014&journal=Laser Photonics Rev&volume=8&pages=137-145
[93]
Liao
Z,
Luo
Y,
Fernández-Domínguez
A I.
High-order localized spoof surface plasmon resonances and experimental verifications.
Sci Rep,
2015, 5: 9590
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-order localized spoof surface plasmon resonances and experimental verifications&author=Liao Z&author=Luo Y&author=Fernández-Domínguez A I&publication_year=2015&journal=Sci Rep&volume=5&pages=9590
[94]
Huidobro
P A,
Shen
X,
Cuerda
J.
Magnetic Localized Surface Plasmons.
Phys Rev X,
2014, 4: 021003
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetic Localized Surface Plasmons&author=Huidobro P A&author=Shen X&author=Cuerda J&publication_year=2014&journal=Phys Rev X&volume=4&pages=021003
[95]
Liao
Z,
Fernández-Domínguez
A I,
Zhang
J.
Homogenous Metamaterial Description of Localized Spoof Plasmons in Spiral Geometries.
ACS Photonics,
2016, 3: 1768-1775
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Homogenous Metamaterial Description of Localized Spoof Plasmons in Spiral Geometries&author=Liao Z&author=Fernández-Domínguez A I&author=Zhang J&publication_year=2016&journal=ACS Photonics&volume=3&pages=1768-1775
[96]
Zhang
J,
Liao
Z,
Luo
Y.
Spoof plasmon hybridization.
Laser Photonics Rev,
2017, 11: 1600191
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spoof plasmon hybridization&author=Zhang J&author=Liao Z&author=Luo Y&publication_year=2017&journal=Laser Photonics Rev&volume=11&pages=1600191
[97]
Liao
Z,
Shen
X,
Pan
B C.
Combined System for Efficient Excitation and Capture of LSP Resonances and Flexible Control of SPP Transmissions.
ACS Photonics,
2015, 2: 738-743
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Combined System for Efficient Excitation and Capture of LSP Resonances and Flexible Control of SPP Transmissions&author=Liao Z&author=Shen X&author=Pan B C&publication_year=2015&journal=ACS Photonics&volume=2&pages=738-743
[98]
Zhang
H C,
Liu
S,
Shen
X.
Broadband amplification of spoof surface plasmon polaritons at microwave frequencies.
Laser Photonics Rev,
2015, 9: 83-90
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband amplification of spoof surface plasmon polaritons at microwave frequencies&author=Zhang H C&author=Liu S&author=Shen X&publication_year=2015&journal=Laser Photonics Rev&volume=9&pages=83-90
[99]
Zhang
H C,
Fan
Y,
Guo
J.
Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials.
ACS Photonics,
2016, 3: 139-146
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials&author=Zhang H C&author=Fan Y&author=Guo J&publication_year=2016&journal=ACS Photonics&volume=3&pages=139-146
[100]
Zhang
H C,
Cui
T J,
Xu
J.
Real-Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial.
Adv Mater Technol,
2017, 2: 1600202
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Real-Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial&author=Zhang H C&author=Cui T J&author=Xu J&publication_year=2017&journal=Adv Mater Technol&volume=2&pages=1600202
[101]
Xu
J J,
Zhang
H C,
Zhang
Q.
Efficient conversion of surface-plasmon-like modes to spatial radiated modes.
Appl Phys Lett,
2015, 106: 021102
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient conversion of surface-plasmon-like modes to spatial radiated modes&author=Xu J J&author=Zhang H C&author=Zhang Q&publication_year=2015&journal=Appl Phys Lett&volume=106&pages=021102
[102]
Yin
J Y,
Zhang
H C,
Fan
Y.
Direct Radiations of Surface Plasmon Polariton Waves by Gradient Groove Depth and Flaring Metal Structure.
Antennas Wirel Propag Lett,
2016, 15: 865-868
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct Radiations of Surface Plasmon Polariton Waves by Gradient Groove Depth and Flaring Metal Structure&author=Yin J Y&author=Zhang H C&author=Fan Y&publication_year=2016&journal=Antennas Wirel Propag Lett&volume=15&pages=865-868
[103]
Xu
J J,
Yin
J Y,
Zhang
H C.
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons.
Sci Rep,
2016, 6: 22692
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons&author=Xu J J&author=Yin J Y&author=Zhang H C&publication_year=2016&journal=Sci Rep&volume=6&pages=22692
[104]
Yin
J Y,
Bao
D,
Ren
J.
Endfire Radiations of Spoof Surface Plasmon Polaritons.
Antennas Wirel Propag Lett,
2017, 16: 597-600
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Endfire Radiations of Spoof Surface Plasmon Polaritons&author=Yin J Y&author=Bao D&author=Ren J&publication_year=2017&journal=Antennas Wirel Propag Lett&volume=16&pages=597-600
[105]
Xu
J J,
Jiang
X,
Zhang
H C.
Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide.
Appl Phys Lett,
2017, 110: 021118
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide&author=Xu J J&author=Jiang X&author=Zhang H C&publication_year=2017&journal=Appl Phys Lett&volume=110&pages=021118
[106]
Kong
G S,
Ma
H F,
Cai
B G.
Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide.
Sci Rep,
2016, 6: 29600
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide&author=Kong G S&author=Ma H F&author=Cai B G&publication_year=2016&journal=Sci Rep&volume=6&pages=29600
[107]
Wang
M,
Ma
H F,
Tang
W X.
Leaky-Wave Radiations with Arbitrarily Customizable Polarizations Based on Spoof Surface Plasmon Polaritons.
Phys Rev Appl,
2019, 12: 014036
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leaky-Wave Radiations with Arbitrarily Customizable Polarizations Based on Spoof Surface Plasmon Polaritons&author=Wang M&author=Ma H F&author=Tang W X&publication_year=2019&journal=Phys Rev Appl&volume=12&pages=014036
[108]
Wang
M,
Ma
H F,
Zhang
H C.
Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line.
IEEE Trans Antennas Propagat,
2018, 66: 4449-4457
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line&author=Wang M&author=Ma H F&author=Zhang H C&publication_year=2018&journal=IEEE Trans Antennas Propagat&volume=66&pages=4449-4457
[109]
Wang
M,
Ma
H F,
Tang
W.
A Dual-Band Electronic-Scanning Leaky-Wave Antenna Based on a Corrugated Microstrip Line.
IEEE Trans Antennas Propagat,
2019, 67: 3433-3438
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Dual-Band Electronic-Scanning Leaky-Wave Antenna Based on a Corrugated Microstrip Line&author=Wang M&author=Ma H F&author=Tang W&publication_year=2019&journal=IEEE Trans Antennas Propagat&volume=67&pages=3433-3438
[110]
Yin
J Y,
Ren
J,
Zhang
L.
Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons (Laser Photonics Rev. 12(3)/2018).
Laser Photonics Rev,
2018, 12: 1870020
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons (Laser Photonics Rev. 12(3)/2018)&author=Yin J Y&author=Ren J&author=Zhang L&publication_year=2018&journal=Laser Photonics Rev&volume=12&pages=1870020
[111]
Wang
M,
Ma
H F,
Wu
L W.
Hybrid Digital Coding Metasurface for Independent Control of Propagating Surface and Spatial Waves.
Adv Opt Mater,
2019, 11: 1900478
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid Digital Coding Metasurface for Independent Control of Propagating Surface and Spatial Waves&author=Wang M&author=Ma H F&author=Wu L W&publication_year=2019&journal=Adv Opt Mater&volume=11&pages=1900478
[112]
Zhang
H C,
Zhang
L P,
He
P H.
A plasmonic route for the integrated wireless communication of subdiffraction-limited signals.
Light Sci Appl,
2020, 9: 113
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A plasmonic route for the integrated wireless communication of subdiffraction-limited signals&author=Zhang H C&author=Zhang L P&author=He P H&publication_year=2020&journal=Light Sci Appl&volume=9&pages=113
[113]
Cui
T J,
Qi
M Q,
Wan
X.
Coding metamaterials, digital metamaterials and programmable metamaterials.
Light Sci Appl,
2014, 3: e218-e218
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coding metamaterials, digital metamaterials and programmable metamaterials&author=Cui T J&author=Qi M Q&author=Wan X&publication_year=2014&journal=Light Sci Appl&volume=3&pages=e218-e218
[114]
Della Giovampaola
C,
Engheta
N.
Digital metamaterials.
Nat Mater,
2014, 13: 1115-1121
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Digital metamaterials&author=Della Giovampaola C&author=Engheta N&publication_year=2014&journal=Nat Mater&volume=13&pages=1115-1121
[115]
Gao
L H,
Cheng
Q,
Yang
J.
Broadband diffusion of terahertz waves by multi-bit coding metasurfaces.
Light Sci Appl,
2015, 4: e324-e324
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband diffusion of terahertz waves by multi-bit coding metasurfaces&author=Gao L H&author=Cheng Q&author=Yang J&publication_year=2015&journal=Light Sci Appl&volume=4&pages=e324-e324
[116]
Liu
S,
Cui
T J,
Xu
Q.
Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves.
Light Sci Appl,
2016, 5: e16076
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves&author=Liu S&author=Cui T J&author=Xu Q&publication_year=2016&journal=Light Sci Appl&volume=5&pages=e16076
[117]
Liu
S,
Zhang
H C,
Zhang
L.
Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces.
ACS Appl Mater Interfaces,
2017, 9: 21503-21514
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces&author=Liu S&author=Zhang H C&author=Zhang L&publication_year=2017&journal=ACS Appl Mater Interfaces&volume=9&pages=21503-21514
[118]
Liu
S,
Zhang
L,
Yang
Q L.
Frequency-Dependent Dual-Functional Coding Metasurfaces at Terahertz Frequencies.
Adv Opt Mater,
2016, 4: 1965-1973
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Frequency-Dependent Dual-Functional Coding Metasurfaces at Terahertz Frequencies&author=Liu S&author=Zhang L&author=Yang Q L&publication_year=2016&journal=Adv Opt Mater&volume=4&pages=1965-1973
[119]
Cui
T J,
Liu
S,
Zhang
L.
Information metamaterials and metasurfaces.
J Mater Chem C,
2017, 5: 3644-3668
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information metamaterials and metasurfaces&author=Cui T J&author=Liu S&author=Zhang L&publication_year=2017&journal=J Mater Chem C&volume=5&pages=3644-3668
[120]
Liu
S,
Cui
T J,
Zhang
L.
Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams.
Adv Sci,
2016, 3: 1600156
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams&author=Liu S&author=Cui T J&author=Zhang L&publication_year=2016&journal=Adv Sci&volume=3&pages=1600156
[121]
Cui
T J,
Liu
S,
Li
L L.
Information entropy of coding metasurface.
Light Sci Appl,
2016, 5: e16172
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information entropy of coding metasurface&author=Cui T J&author=Liu S&author=Li L L&publication_year=2016&journal=Light Sci Appl&volume=5&pages=e16172
[122]
Wu
H,
Bai
G D,
Liu
S.
Information theory of metasurfaces.
Natl Sci Rev,
2020, 7: 561-571
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information theory of metasurfaces&author=Wu H&author=Bai G D&author=Liu S&publication_year=2020&journal=Natl Sci Rev&volume=7&pages=561-571
[123]
Wu
R Y,
Shi
C B,
Liu
S.
Addition Theorem for Digital Coding Metamaterials.
Adv Opt Mater,
2018, 6: 1701236
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Addition Theorem for Digital Coding Metamaterials&author=Wu R Y&author=Shi C B&author=Liu S&publication_year=2018&journal=Adv Opt Mater&volume=6&pages=1701236
[124]
Zhao
J,
Yang
X,
Dai
J Y.
Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems.
Natl Sci Rev,
2019, 6: 231-238
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems&author=Zhao J&author=Yang X&author=Dai J Y&publication_year=2019&journal=Natl Sci Rev&volume=6&pages=231-238
[125]
Dai
J Y,
Zhao
J,
Cheng
Q.
Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface.
Light Sci Appl,
2018, 7: 90
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface&author=Dai J Y&author=Zhao J&author=Cheng Q&publication_year=2018&journal=Light Sci Appl&volume=7&pages=90
[126]
Zhang
L,
Chen
X Q,
Liu
S.
Space-time-coding digital metasurfaces.
Nat Commun,
2018, 9: 4334
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Space-time-coding digital metasurfaces&author=Zhang L&author=Chen X Q&author=Liu S&publication_year=2018&journal=Nat Commun&volume=9&pages=4334
[127]
Zhang
L,
Wang
Z X,
Shao
R W.
Dynamically Realizing Arbitrary Multi-Bit Programmable Phases Using a 2-Bit Time-Domain Coding Metasurface.
IEEE Trans Antennas Propagat,
2020, 68: 2984-2992
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamically Realizing Arbitrary Multi-Bit Programmable Phases Using a 2-Bit Time-Domain Coding Metasurface&author=Zhang L&author=Wang Z X&author=Shao R W&publication_year=2020&journal=IEEE Trans Antennas Propagat&volume=68&pages=2984-2992
[128]
Zhang
C,
Yang
J,
Yang
L X.
Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics.
Nanophotonics,
2020, 0
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics&author=Zhang C&author=Yang J&author=Yang L X&publication_year=2020&journal=Nanophotonics&volume=0&
[129]
Zhang
L,
Chen
X Q,
Shao
R W.
Breaking Reciprocity with Space?Time?Coding Digital Metasurfaces.
Adv Mater,
2019, 31: 1904069
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Breaking Reciprocity with Space?Time?Coding Digital Metasurfaces&author=Zhang L&author=Chen X Q&author=Shao R W&publication_year=2019&journal=Adv Mater&volume=31&pages=1904069
[130]
Li
L,
Jun Cui
T,
Ji
W.
Electromagnetic reprogrammable coding-metasurface holograms.
Nat Commun,
2017, 8: 197
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electromagnetic reprogrammable coding-metasurface holograms&author=Li L&author=Jun Cui T&author=Ji W&publication_year=2017&journal=Nat Commun&volume=8&pages=197
[131]
Li
Y B,
Li
L L,
Xu
B B.
Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging.
Sci Rep,
2016, 6: 23731
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging&author=Li Y B&author=Li L L&author=Xu B B&publication_year=2016&journal=Sci Rep&volume=6&pages=23731
[132]
Li
L,
Hurtado
M,
Xu
F.
A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging.
FNT Signal Processing,
2018, 12: 107-199
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging&author=Li L&author=Hurtado M&author=Xu F&publication_year=2018&journal=FNT Signal Processing&volume=12&pages=107-199
[133]
Cui
T J,
Liu
S,
Bai
G D.
Direct Transmission of Digital Message via Programmable Coding Metasurface.
Research,
2019, 2019(e218): 1-12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct Transmission of Digital Message via Programmable Coding Metasurface&author=Cui T J&author=Liu S&author=Bai G D&publication_year=2019&journal=Research&volume=2019(e218)&pages=1-12
[134]
Wan
X,
Zhang
Q,
Yi Chen
T.
Multichannel direct transmissions of near-field information.
Light Sci Appl,
2019, 8: 60
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multichannel direct transmissions of near-field information&author=Wan X&author=Zhang Q&author=Yi Chen T&publication_year=2019&journal=Light Sci Appl&volume=8&pages=60
[135]
Dai
J Y,
Tang
W K,
Zhao
J.
Wireless Communications through a Simplified Architecture Based on Time?Domain Digital Coding Metasurface.
Adv Mater Technol,
2019, 4: 1900044
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wireless Communications through a Simplified Architecture Based on Time?Domain Digital Coding Metasurface&author=Dai J Y&author=Tang W K&author=Zhao J&publication_year=2019&journal=Adv Mater Technol&volume=4&pages=1900044
[136]
Tang
W,
Dai
J Y,
Chen
M.
Programmable metasurface-based RF chain-free 8PSK wireless transmitter.
Electron Lett,
2019, 55: 417-420
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Programmable metasurface-based RF chain-free 8PSK wireless transmitter&author=Tang W&author=Dai J Y&author=Chen M&publication_year=2019&journal=Electron Lett&volume=55&pages=417-420
[137]
Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, K.-Wong K, and Cui T J. Programmable metasurfaces: The future of wireless? Electronics Letters, 2019, 55: 360--361.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, K.-Wong K, and Cui T J. Programmable metasurfaces: The future of wireless? Electronics Letters, 2019, 55: 360--361&
[138]
Dai
J Y,
Tang
W,
Yang
L X.
Realization of Multi-Modulation Schemes for Wireless Communication by Time-Domain Digital Coding Metasurface.
IEEE Trans Antennas Propagat,
2020, 68: 1618-1627
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of Multi-Modulation Schemes for Wireless Communication by Time-Domain Digital Coding Metasurface&author=Dai J Y&author=Tang W&author=Yang L X&publication_year=2020&journal=IEEE Trans Antennas Propagat&volume=68&pages=1618-1627
[139]
Tang W, Chen M Z, Chen X, Dai J Y, Han Y, Renzo M D, Zeng Y, Jin S, Cheng Q, and Cui T J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Transactions on Wireless Communications, accepted, 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang W, Chen M Z, Chen X, Dai J Y, Han Y, Renzo M D, Zeng Y, Jin S, Cheng Q, and Cui T J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Transactions on Wireless Communications, accepted, 2020&
[140]
Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, and Cui T J. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver. IEEE Wireless Communications, accepted, 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, and Cui T J. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver. IEEE Wireless Communications, accepted, 2020&
[141]
Ma
Q,
Bai
G D,
Jing
H B.
Smart metasurface with self-adaptively reprogrammable functions.
Light Sci Appl,
2019, 8: 98
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Smart metasurface with self-adaptively reprogrammable functions&author=Ma Q&author=Bai G D&author=Jing H B&publication_year=2019&journal=Light Sci Appl&volume=8&pages=98
[142]
Ma
Q,
Hong
Q R,
Gao
X X.
Smart sensing metasurface with self-defined functions in dual polarizations.
Nanophotonics,
2020, 0
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Smart sensing metasurface with self-defined functions in dual polarizations&author=Ma Q&author=Hong Q R&author=Gao X X&publication_year=2020&journal=Nanophotonics&volume=0&
[143]
Li
L,
Ruan
H,
Liu
C.
Machine-learning reprogrammable metasurface imager.
Nat Commun,
2019, 10: 1082
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine-learning reprogrammable metasurface imager&author=Li L&author=Ruan H&author=Liu C&publication_year=2019&journal=Nat Commun&volume=10&pages=1082
[144]
Li
L,
Shuang
Y,
Ma
Q.
Intelligent metasurface imager and recognizer.
Light Sci Appl,
2019, 8: 97
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intelligent metasurface imager and recognizer&author=Li L&author=Shuang Y&author=Ma Q&publication_year=2019&journal=Light Sci Appl&volume=8&pages=97
[145]
Li
H Y,
Zhao
H T,
Wei
M L.
Intelligent Electromagnetic Sensing with Learnable Data Acquisition and Processing.
Patterns,
2020, 1: 100006
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intelligent Electromagnetic Sensing with Learnable Data Acquisition and Processing&author=Li H Y&author=Zhao H T&author=Wei M L&publication_year=2020&journal=Patterns&volume=1&pages=100006
[146]
Zhang
Q,
Liu
C,
Wan
X.
Machine?Łearning Designs of Anisotropic Digital Coding Metasurfaces.
Adv Theor Simul,
2019, 2: 1800132
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine?Łearning Designs of Anisotropic Digital Coding Metasurfaces&author=Zhang Q&author=Liu C&author=Wan X&publication_year=2019&journal=Adv Theor Simul&volume=2&pages=1800132
[147]
Qiu
T,
Shi
X,
Wang
J.
Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design.
Adv Sci,
2019, 6: 1900128
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design&author=Qiu T&author=Shi X&author=Wang J&publication_year=2019&journal=Adv Sci&volume=6&pages=1900128
[148]
Cui T J, Tang W X, Yang X M, et al. Metamaterials -- Beyond Crystals, Noncrystals, and Quasicrystals. Boca Raton: CRC Press, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cui T J, Tang W X, Yang X M, et al. Metamaterials -- Beyond Crystals, Noncrystals, and Quasicrystals. Boca Raton: CRC Press, 2016&
[149]
Cui
T J.
Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves.
J Opt,
2017, 19: 084004
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves&author=Cui T J&publication_year=2017&journal=J Opt&volume=19&pages=084004
[150]
Liu
S,
Cui
T J.
Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials.
Adv Opt Mater,
2017, 5: 1700624
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials&author=Liu S&author=Cui T J&publication_year=2017&journal=Adv Opt Mater&volume=5&pages=1700624
[151]
Cui
T J.
Microwave metamaterials.
Natl Sci Rev,
2018, 5: 134-136
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave metamaterials&author=Cui T J&publication_year=2018&journal=Natl Sci Rev&volume=5&pages=134-136
[152]
Tang
W X,
Zhang
H C,
Ma
H F.
Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies.
Adv Opt Mater,
2019, 7: 1800421
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies&author=Tang W X&author=Zhang H C&author=Ma H F&publication_year=2019&journal=Adv Opt Mater&volume=7&pages=1800421
[153]
Fu
X,
Cui
T J.
Recent progress on metamaterials: From effective medium model to real-time information processing system.
Prog Quantum Electron,
2019, 67: 100223
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent progress on metamaterials: From effective medium model to real-time information processing system&author=Fu X&author=Cui T J&publication_year=2019&journal=Prog Quantum Electron&volume=67&pages=100223
[154]
Chen
T,
Tang
W,
Mu
J.
Microwave Metamaterials.
ANNALEN DER PHYSIK,
2019, 531: 1800445
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave Metamaterials&author=Chen T&author=Tang W&author=Mu J&publication_year=2019&journal=ANNALEN DER PHYSIK&volume=531&pages=1800445
[155]
Ma
Q,
Cui
T J.
Information Metamaterials: bridging the physical world and digital world.
PhotoniX,
2020, 1: 1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information Metamaterials: bridging the physical world and digital world&author=Ma Q&author=Cui T J&publication_year=2020&journal=PhotoniX&volume=1&pages=1
[156]
Bao
L,
Cui
T J.
Tunable, reconfigurable, and programmable metamaterials.
Microw Opt Technol Lett,
2020, 62: 9-32
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tunable, reconfigurable, and programmable metamaterials&author=Bao L&author=Cui T J&publication_year=2020&journal=Microw Opt Technol Lett&volume=62&pages=9-32
[157]
Wu
R,
Cui
T.
Microwave metamaterials: from exotic physics to novel information systems.
Front Inform Technol Electron Eng,
2020, 21: 4-26
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave metamaterials: from exotic physics to novel information systems&author=Wu R&author=Cui T&publication_year=2020&journal=Front Inform Technol Electron Eng&volume=21&pages=4-26