logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 12 : 1783(2020) https://doi.org/10.1360/SSI-2020-0103

Technological breakthrough and scientific achievement of Chang'e-4 project

More info
  • ReceivedApr 23, 2020
  • AcceptedJun 10, 2020
  • PublishedDec 3, 2020

Abstract


Funded by

国家中长期科技发展规划重大专项(探月工程)


References

[1] Wu W R, Liu J Z, Tang Y H, et al. China lunar exploration program. J Deep Space Explor, 2019, 6: 405--416. Google Scholar

[2] Ouyang Z Y. Introduction to Lunar Science. Beijing: Beijing Astronautic Publishing House, 2005. Google Scholar

[3] Sun Z Z. Technology of Deep Space Exploration. Beijing: Beijing Institute of Technology Publishing House, 2018. Google Scholar

[4] Li F, Wu B, Yang M, et al. Topographic and occlusion analysis of the Chang'E-4 landing site in the Von Kármán crater. Sci Sin Tech, 2019, 49: 1385--1396. Google Scholar

[5] Ji Y C, Zhao B, Fang G Y, et al. Key technologies of very low frequency radio observations on the lunar far side. J Deep Space Explor, 2017, 4: 150--157. Google Scholar

[6] Fan W W, Yang F, Han L, et al. Overview of Russia's future plan of lunar exploration. Sci Technol Rev, 2019, 37: 6--11. Google Scholar

[7] Li Y, He H D. An analysis of manned return to the moon in the United States before 2024. Space Int, 2019, 8: 18--25. Google Scholar

[8] Lu B. Review and prospect of world lunar exploration. Space Int, 2019, 1: 12--18. Google Scholar

[9] Wu W R, Liu J Z, Tang Y H. The Chang'E-4 Mission. Beijing: China Astronaut Publ House, 2019. Google Scholar

[10] Ye P J, Sun Z Z, Zhang H. Mission design of Chang’e-4 probe system. Sci Sin Tech, 2019, 49: 124-137 CrossRef Google Scholar

[11] Zhang L H, Xiong L, Sun J. Technical characteristics of the relay communication satellite “Queqiao” for Chang’e-4 lunar farside exploration mission. Sci Sin Tech, 2019, 49: 138-146 CrossRef Google Scholar

[12] Zhang H, Wu X Y, Li F. Overview of Chang'E-4 probe mission. Aerospace China, 2019, 4, 16--23. Google Scholar

[13] Sun Z Z, Wu X Y, Liu S. Design and verification of relay communication system for lunar farside exploration. Sci Sin Tech, 2019, 49: 147-155 CrossRef Google Scholar

[14] Yu D Y, Zhou W Y, Gao S. Orbit dynamic modeling and control strategy for earth-moon system libration point. Spacecr Eng, 2019, 28: 9--18. Google Scholar

[15] Chen G H, Wang B, Hua Y. The key technologies for radial rib deployable antenna of Chang’e-4 relay satellite. Sci Sin Tech, 2019, 49: 166-174 CrossRef Google Scholar

[16] Sun Z Z, Zhang H, Wu X Y, et al. Flight results of Chang'E-4 lander summary and evaluation. Sci Sin Tech, 2019, 49: 1397--1407. Google Scholar

[17] Wang J, Wu W R, Li J. Vision based Chang’E-4 landing point localization. Sci Sin Tech, 2020, 50: 41-53 CrossRef Google Scholar

[18] Liu D C, Zhou W Y, Gao S, et al. Design and implementation of lunar landing orbital maneuver strategy at fixed-time and fixed-site for Chang'E-4 lander. Spacecr Eng, 2019, 28: 16--21. Google Scholar

[19] Yu D Y. Technology of Lunar Soft Lander. Beijing: National Defense Industry Press, 2016. Google Scholar

[20] Zhang H H, Guan Y F, Cheng M, et al. Guidance navigation and control for Chang'E-4 lander. Sci Sin Tech, 2019, 49: 1418--1428. Google Scholar

[21] Song X, Chen X D, Lei Y J, et al. Design and verification of hear and electricity cogeneration system in moon night of Chang'E-4 lander. Spacecr Eng, 2019, 28: 64--69. Google Scholar

[22] Liu X Z. Chang'E-4 relay satellite has been launched successfully. Missiles Space Veh, 2018, 3: 14. Google Scholar

[23] Wei J H. Chang'E-4 probe was launched successfully by Changzheng 3B carrier rocket. Aerospace China, 2018, 12: 30--21. Google Scholar

[24] Dong G L, Geng H J, Li G M, et al. China Deep Space Network: System Design and Key Technologies. Beijing: TsingHua University Press, 2016. Google Scholar

[25] Liu S, Huang X F, Mao Z, et al. Design and verification of Telecommunication system for Chang'E-4 lander. Spacecr Eng, 2019, 28: 85--93. Google Scholar

[26] Chen L, Xie J F, Han S T, et al. Open loop velocity measurement scheme design and verification of Chang'E-4 relay satellite. J Deep Space Explor, 2019, 6: 236--240. Google Scholar

[27] Duan J F, Chen M, Zhang Y, et al. Orbit determination and analysis of Chang'E-4 relay satellite on mission orbit. J Deep Space Explor, 2019, 6: 247--253. Google Scholar

[28] Wu W R, Dong G L, Li H T. Engineering and Technology of Deep Space TT&C System. Beijing: Science Press, 2016. Google Scholar

[29] Li C, Su Y, Pettinelli E. The Moon's farside shallow subsurface structure unveiled by Chang'E-4 Lunar Penetrating Radar. Sci Adv, 2020, 6: eaay6898 CrossRef ADS Google Scholar

[30] Li C, Liu D, Liu B. Chang'E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature, 2019, 569: 378-382 CrossRef ADS Google Scholar

[31] Lin H, He Z, Yang W. Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool. Natl Sci Rev, 2020, 7: 913-920 CrossRef Google Scholar

[32] Zhang A, Wieser M, Wang C. Emission of energetic neutral atoms measured on the lunar surface by Chang'E-4. Planet Space Sci, 2020, 189: 104970 CrossRef ADS Google Scholar

[33] Jia Y Z, Xue C B, Zou Y L. The far side of moon — the holy land of low-frequency radio astronomy. Modern Phy, 2019, 4: 101--108. Google Scholar

[34] Xu H T, Xue C B, Liu P, et al. Payload task design and verification of Chang'E-4 lander. Spacecr Eng, 2019, 28: 101--108. Google Scholar

[35] Li C X, Gao Q P, Li Y Q. Estimation of the success probability for relay satellite laser ranging around E-M L2. Astron Res Technol, 2019, 16: 44--53. Google Scholar

[36] He Y, Liu Q, Tian W, et al. Study on laser ranging for satellite on the second lagrange point of Earth-Moon system. J Deep Space Explor, 2017, 4: 130--137. Google Scholar

[37] Gao Q P, Li C X, Li R W, et al. Magpie bridge satellite laser ranging time window and distance probability analysis. Astron Res Technol, 2019, 16: 422--430. Google Scholar