[1] Yu S H. Ten characteristics of network communication technology. People's Posts and Telecommunications News, 2018-08-16 (005). Google Scholar
[2] Yu S H. The Seven Technical Walls of Network Communications and the Primary Exploration of Trends. Study Opt Commun, 2018, 44: 1--7. Google Scholar
[3] Yu S H, Hu X Z. Research on the Leading Edge of Ultra High Speed, Ultra Large Capacity and Ultra Long Distance Optical Fiber Transmission System. Beijing: Science Press, 2014. Google Scholar
[4] Winzer P J. Scaling optical fiber networks: Challenges and solutions. Opt Photonics News, 2015, 26(3): 28--35. Google Scholar
[5] Luo M, Li C, Yang Q, et al. 100.3-Tb/s (375$\times~$267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Proceedings of Asia Communications and Photonics Conference, Shanghai, 2014. Google Scholar
[6] Winzer P J. Making spatial multiplexing a reality. Nat Photon, 2014, 8: 345-348 CrossRef ADS Google Scholar
[7] Zhou X, Yu J, Huang M F, et al. 64-Tb/s (640$\times~$107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2010. 1--3. Google Scholar
[8] Sano A, Masuda H, Kobayashi T, et al. 69.1Tb/s (432$\times~$171Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2010. 1--3. Google Scholar
[9] Qian D, Huang M, Ip E, et al. 101.7-Tb/s (370$\times~$294-Gb/s) PDM-128QAM-OFDM transmission over 3$\times~$55-km SSMF using pilot-based phase noise mitigation. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2011. PDPB5. Google Scholar
[10] Sano A, Kobayashi T, Yamanaka S, et al. 102.3-Tb/s (224$\times~$548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2012. 1--3. Google Scholar
[11] 徐至展 . 63-Tb/s (368183.3-Gb/s) C- and L-band all-Raman transmission over 160-km SSMF using PDM-OFDM-16QAM modulation. Chin Opt Lett, 2014, 12: 040601 CrossRef ADS Google Scholar
[12] Luo M, Li C, Yang Q, et al. 100.3-Tb/s(375$\times~$267.27-Gb/s) C- and L-band Transmission over 80-km SSMF Using DFT-S OFDM 128-QAM. In: Proceedings of Asia Communications and Photonics Conference, Shanghai, 2014. AF4B.1. Google Scholar
[13] Renaudier J, Carbo Meseguer A, Ghazisaeidi A, et al. First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100 km using novel ultrawideband semiconductor optical amplifiers. In: Proceedings of the 43rd Europeen Conference on Optical Communication, Gothenburg, 2017. 1--3. Google Scholar
[14] Ionescu M, Galdino L, Edwards A, et al. 91 nm C+L Hybrid Distributed Raman--Erbium-Doped Fibre Amplifier for High Capacity Subsea Transmission. In: Proceedings of the 44th Europeen Conference on Optical Communication, Roma, 2018. Mo4G.2. Google Scholar
[15] Hamaoka F, Minoguchi K, Sasai T, et al. 150.3-Tb/s ultra-wideband (S, C, and L Bands) single-mode fibre transmission over 40-km using 519Gb/s/A PDM-128QAM signals. In: Proceedings of the 44th Europeen Conference on Optical Communication, Roma, 2018. Mo4G.1. Google Scholar
[16] Sleiffer V A J M, Jung Y, Inan B, et al. Mode-division-multiplexed 3$\times~$112-Gb/s DP-QPSK transmission over 80-km few-mode fiber with inline MM-EDFA and blind DSP. In: Proceedings of the 38th European Conference and Exhibition on Optical Communications, Amsterdam, 2012. 1--3. Google Scholar
[17] Sleiffer V A J M, Leoni P, Jung Y, et al. 20$\times~$960-Gb/s MDM-DP-32QAM transmission over 60km FMF with inline MM-EDFA. In: Proceedings of the 39th European Conference and Exhibition on Optical Communications, 2013. 444--446. Google Scholar
[18] Ryf R, Randel S, Fontaine N K, et al. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. 1--3. Google Scholar
[19] Ip E, Li M J, Bennett K, et al. 146$\lambda~\times~$6$\times~$19-Gbaud wavelength- and mode-division multiplexed transmission over 10$\times~$50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. 790--797. Google Scholar
[20] M. Luo, X. Li, Q. Yang, et al. Transmission of 200Tb/s (375$\times~$3$\times~$178.125Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 67--78. Google Scholar
[21] Ryf R, Chen H, Fontaine N K, et al. 10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber. In: Proceedings of European Conference on Optical Communication (ECOC), 2015. 1--3. Google Scholar
[22] Soma D, Beppu S, Sumita S, et al. 402.7-Tb/s weakly-coupled 10-mode-multiplexed transmission using rate-adaptive PS PDM-16QAM WDM signals. In: Proceedings of European Conference on Optical Communication (ECOC), 2019. W.2.A.2. Google Scholar
[23] Ryf R, Sierra A, Essiambre R, et al. Coherent 1200-km 6$\times~$6 MIMO Mode- Multiplexed Transmission over 3-Core Microstructured Fiber. In: Proceedings of the 37th European Conference and Exhibition on Optical Communication, 2011. Th.13.C.1. Google Scholar
[24] Ryf R, Randel S, Gnauck A H. Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6$\,\times\,$6 MIMO Processing. J Lightwave Technol, 2012, 30: 521-531 CrossRef ADS Google Scholar
[25] Luo M, Qiu Y, Li X, et al. 560 Tbit/s coherent optical PDM DFT-s OFDM 32QAM signal transmission over 10 km single-mode 7 core fiber. Study Opt Commun, 2017, 2: 1--4. Google Scholar
[26] Igarashi K, Takeshima K, Tsuritani T. 1109-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA. Opt Express, 2013, 21: 18053-18060 CrossRef ADS Google Scholar
[27] Puttnam B J, Luis R S, Klaus W, et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. In: Proceedings of European Conference on Optical Communication (ECOC), 2015. 1--3. Google Scholar
[28] Benjamin J P, Ruben S L, Georg R, et al. 0.596 Pb/s S, C, L-Band Transmission in a 125$\mu~$m Diameter 4-core Fiber Using a Single Wideband Comb Source. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2020. Th3H.5. Google Scholar
[29] Qian D Y, Ezra I, Huang M F, et al. 1.05Pb/s transmission with 109 b/s/Hz spectral efficiency using hybrid single- and few-mode cores. In: Proceedings of Frontiers in Optics 2012, 2012. FW6C.3. Google Scholar
[30] Soma D, Igarashi K, Wakayama Y, et al. 2.05 peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band. In: Proceedings of European Conference on Optical Communication (ECOC), 2015. PDP.3.2. Google Scholar
[31] Lu'ıs R S, Rademacher G, Puttnam B J, et al. 1.2 Pb/s transmission over a 160 $\mu~$m cladding, 4-core, 3-mode fiber, using 368 C+L band PDM-256-QAM channels. In: Proceedings of European Conference on Optical Communication (ECOC), 2018. 1--3. Google Scholar
[32] Soma D, Wakayama Y, Beppu S. et al. 10.16-Peta-bit/s Dense SDM/WDM Transmission over 6-Mode 19-Core Fiber across the C+L Band. J. Lightwave Technol., 2018, 36(6): 1362--1368. Google Scholar
[33] Georg R, Benjamin J P, Ruben S L, et al. 10.66 Peta-Bit/s Transmission over a 38-Core-Three-Mode Fiber. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2020. Th3H.1. Google Scholar
[34] Xia T J, Wellbrock G A, Huang Y K, et al. 10,000-km enhanced long-haul transmission of 1.15Tb/s superchannel using SSMF only. In: Proceedings of the 16th Opto-Electronics and Communications Conference, 2011. 758--759. Google Scholar
[35] Winzer P J, Essiambre R J. High-Speed and High-Capacity Optical Transmission Systems. In: High Spectral Density Optical Communication Technologies. Berlin: Springer, 2010. 103--127. Google Scholar
[36] Chbat M W, Spalter S. From 100G to 1000G: Is there a straight road ahead? In: Proceedings of European Conference on Optical Communication (ECOC), 2010. 1--16. Google Scholar
[37] Salsi M, Rios-Muller R, Renaudier J, et al. 38.75Tb/s transmission experiment over transoceanic distance. In: Proceedings of European Conference on Optical Communication (ECOC), 2013. 1--3. Google Scholar
[38] Foursa D G, Batshon H G, Zhang H, et al. 44.1 Tb/s transmission over 9,100km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency. In: Proceedings of European Conference on Optical Communication (ECOC), 2013. 1--3. Google Scholar
[39] Qian D, Huang M F, Zhang S. 30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length. Opt Express, 2013, 21: 14244-14250 CrossRef ADS Google Scholar
[40] Xia T J, Wellbrock G A, Tanaka A, et al. High Capacity Field Trials of 40.5Tb/s for LH Distance of 1,822km and 54.2Tb/s for Regional Distance of 634km. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. 1--3. Google Scholar
[41] Georg R, Ruben S L, Benjamin J P, et al. 172Tb/s C+L Band Transmission over 2040km Strongly Coupled 3-Core Fiber. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2020. Th4C.5. Google Scholar
[42] Benjamin J P, Georg R, Ruben S L, et al. 8007 km C + L band transmission over MCF with 19-core cladding-pumped EDFA. In: Proceedings of European Conference on Optical Communication (ECOC), 2019. Tu.1.A.2. Google Scholar
[43] Turukhin A, Paskov M, Mazurczyk M V, et al. Demonstration of Potential 130.8 Tb/s Capacity in PowerEfficient SDM Transmission over 12,700 km Using Hybrid Micro-Assembly Based Amplifier Platform. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2019. M2I.4. Google Scholar
[44] Shaohua Yu et al, Recent progress in an`ultra-high speed, ultra-large capacity, ultra-long distance'optical transmission system (Invited Paper). Google Scholar
[45] Daojun Xue, Shaohua Yu, et al. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission, Frontiers of Optoelectronics. 2016, 9(2): 123-137, DOI 10.1007/s12200-016-0612-5. Google Scholar
[46] Yang Q, He Z, Liu W, et al. 1-Tb/s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2011. 1--3. Google Scholar
[47] He Z X, Luo M, Li C, et al. 30.7Tbit/s Coherent Optical PDM-16QAM OFDM Signal Transmission over 80 km SSMF. Study Opt Commun, 2012, 6: 1--3. Google Scholar
[48] Li C, Djordjevic I, Luo M, et al. Ultra Long-Haul Transmission of a 1-Tb/s LDPC-Coded DFT-S OFDM-8PSK Superchannel over 12,160km. In: Proceedings of Asia Communications and Photonics Conference 2013, 2013. PDPB4. Google Scholar
[49] Yang Q, Xiao X, Li C, et al. 168$\times~$103Gb/s 25-GHz-Spaced C-band transmission over 2240km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Proceedings of Asia Communications and Photonics Conference 2012, 2012. AF4B.3. Google Scholar
[50] Collings B. New devices enabling software-defined optical networks. IEEE Commun. Mag., 2013, 51(3): 66--71. Google Scholar
[51] Project acceptance conclusion of National High Technology Research and Development Program (863). Research and development of a new gridless, variable rate all-optical switching technology and experimental prototype (No.2012AA011302). May 31, 2015. Wuhan research institute of posts and telecommunications. Google Scholar
[52] Winzer P J, Neilson D T. From Scaling Disparities to Integrated Parallelism: A Decathlon for a Decade. J Lightwave Technol, 2017, 35: 1099-1115 CrossRef ADS Google Scholar
[53] Fabbri S J, Sygletos S, Perentos A. Experimental Implementation of an All-Optical Interferometric Drop, Add, and Extract Multiplexer for Superchannels. J Lightwave Technol, 2015, 33: 1351-1357 CrossRef ADS Google Scholar
[54] Kim Y-J, Simsarian J E, Choi N, et al. Cross-layer aware packet-optical link manage-ment in software-defined network operating system. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2018. Th2A.31. Google Scholar
[55] Shaohua Yu. A New Paradigm of Future Network: Net-AI Agent and City-AI Agent. Study on Optical Communications, 2018, 210(06): 5-14. Google Scholar
[56] Yu S H, Zhang X Q. Information Optoelectronics. Beijing: Science Press, 2019. Google Scholar
[57] Yu S H, et al. Center for Electronics and Information Studies Chinese Academy of Engineering. Research on the Development of Electronic Information Engineering Technology in China (2018--2019), Special Theme 6 Network and Communication: 215-253, Special Theme 1 Microelectronic and Optoelectronics: 49--71. Google Scholar
[58] Chen L, Yu S H. Preliminary study on the trend of 6G mobile communication. Study Opt Commun, 2019, 4: 1--7. Google Scholar
[59] Liang Chen, Shaohua Yu. Preliminary Study on the Key Technologies of 6G Mobile Communication. Study on Optical Communications, 2019, (5): 1--7. Google Scholar
Figure 1
(Color online) Products and research records of single carrier interface rates and WDM capacities
Figure 2
(Color online) Key technologies promote continuous improvement of transmission capacity and distance
Figure 3
(Color online) Five development directions of optical fiber communication
Figure 4
(Color online) Five physical dimensions to improve the capacity of optical fiber communication system
Figure 5
(Color online) The architecture and composition of flexible optical network
Figure 6
(Color online) Evolution steps of ultra-strong intelligent optical network based on IP and optical cross layer cooperation
Figure 7
(Color online) WDM$\times~$SDM resource matrix and array integration technology supporting SDM transmission
Figure 8
(Color online) Possible future spatial switching node architecture for WDM$\times~$SDM networks
Capacity (Tb/s) | Modulation format | Band | SE (bit/s/Hz) | Distance (km) | Institution | Year |
64 | 107G-PDM-36QAM | C, L | 8 | 320 | Bell Lab | 2010 |
69 | 171.2G-PDM-16QAM | C, L+ | 6.4 | 240 | NTT Lab | 2010 |
101.7 | 294G-PDM-128QAM-OFDM | C, L | 11 | 165 | NEC Lab | 2011 |
102.3 | 548G-PDM-64QAM-SC-FDM | C, L+ | 9.1 | 240 | NTT Lab | 2012 |
63 | 183.3-PDM-OFDM-16QAM | C, L | 6.85 | 160 | WRI | 2013 |
100.3 | 320.7G-PDM-128QAM-DFTS OFDM | C, L | 10.7 | 80 | WRI | 2014 |
66 | Single carrier 2048QAM | C, L | 15.3 | 150 | Tohoku University | 2015 |
115 | 460G-PCS-64QAM | S, C, L | 9.2 | 100 | Bell Lab | 2017 |
120 | 385G-PDM-256QAM | C, L | 10.99 | 630 | Xtera Communications | 2018 |
150.3 | PDM-128QAM | S, C, L | 11.05 | 40 | NTT Lab | 2018 |
Capacity (Tb/s) | Modulation format | Mode | SE (bit/s/Hz) | Distance (km) | Institution | Year |
57.6 | PDM-QPSK | 3 | 12 | 119 | TU Eindhoven | 2012 |
24.6 | PDM-16QAM | 12 | 32 | 177 | Bell Lab | 2013 |
21.6 | PDM-16QAM | 15 | 43.63 | 22.8 | Bell Lab | 2015 |
115.2 | PDM-QPSK | 10 | 29 | 125 | Bell Lab | 2015 |
200 | PDM-DFTS-OFDM-32QAM | 3 | 21.375 | 1 | WRI | 2015 |
266.1 | PDM-16QAM | 6 | 36.7 | 90.4 | KDDI Lab | 2018 |
280 | PDM-64QAM | 3 | 30 | 93.34 | NICT | 2018 |
402.7 | PDM-16QAM | 10 | 47 | 48 | KDDI Lab | 2019 |
Capacity (Tb/s) | Modulation format | Core | SE (bit/s/Hz) | Distance (km) | Institution | Year |
112 | PDM-QPSK | 7 | 14 | 76.8 | OFS Lab | 2011 |
305 | PDM-QPSK | 19 | 30.5 | 10.1 | NICT | 2012 |
1010 | PDM-32QAM | 12 | 91.4 | 52 | NTT Lab | 2012 |
110 | PDM-QPSK | 7 | 22.4 | 6370 | KDDI Lab | 2013 |
2150 | PDM-64QAM | 22 | 215.6 | 31 | NICT | 2015 |
560 | DFT-s PDM-OFDM-32QAM | 7 | 59.95 | 10 | WRI | 2016 |
1060 | PDM-16QAM-OFDM | 19 | 113 | 1 | WRI | 2018 |
596 | PDM-16/256QAM | 4 | 42.67 | 54 | NICT | 2020 |
Capacity (Tb/s) | Modulation format | Mode/Core | SE (bit/s/Hz) | Distance (km) | Institution | Year |
1050 | PDM-32QAM-OFDM | 2/12 | 109 | 3 | NEC Lab | 2012 |
2050 | DP-QPSK | 6/19 | 456 | 9.8 | KDDI Lab | 2016 |
1200 | PDM-256QAM | 3/4 | 130.4 | 3.37 | NICT | 2018 |
10160 | PDM-64QAM | 6/19 | 1099.9 | 11.31 | KDDI Lab | 2018 |
10660 | PDM-64/256QAM | 3/38 | 1158.7 | 13 | NICT | 2020 |
Capacity (Tb/s) | Distance (km) | Capacity$\times~$Distance (Tb/s$\times~$km) | Fiber | Institution | Year |
30 | 6630 | 198900 | Single-mode | TE SubCom | 2012 |
44.1 | 9100 | 401310 | Single-mode | TE SubCom | 2013 |
54 | 9150 | 494100 | Single-mode | TE SubCom | 2014 |
52.2 | 10230 | 534000 | Single-mode | TE SubCom | 2015 |
140.7 | 7326 | 1025000 | Multi-core (7) | KDDI Lab | 2015 |
65 | 6600 | 429000 | Single-mode | Bell Lab | 2016 |
70.46 | 7600 | 535496 | Single-mode | TE SubCom | 2017 |
51.5 | 17107 | 881010 | Single-mode | TE SubCom | 2017 |
25.4 | 10285 | 261239 | Single-mode | Bell Lab | 2018 |
314.5 | 8007 | 2518201.5 | Multi-core (19) | NICT | 2019 |
130.8 | 12700 | 1661160 | Multi-core (12) | TE Subsea | 2019 |
Communications LLC | |||||
172 | 2040 | 350880 | Multi-core (3) | NICT | 2020 |