logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 7 : 1183(2021) https://doi.org/10.1360/SSI-2020-0090

An approach to improve the polarization measurement accuracy of fully polarimetric phased array radar

More info
  • ReceivedApr 13, 2020
  • AcceptedAug 1, 2020
  • PublishedJun 23, 2021

Abstract


Funded by

国家自然科学基金重大项目(61490690,61490694)

国家杰出青年科学基金(61625108)

国家自然科学基金面上项目(61971429)

国家自然科学基金青年科学基金(61701512)


References

[1] Wang X S. Status and prospects of radar polarimetry techniques. J Radars, 2016, 5: 119-131. Google Scholar

[2] Wang X S, Li Y Z, Dai H Y, et al. Research on instantaneous polarization radar system and external experiment. Chin Sci Bull, 2010, 55: 937-944. Google Scholar

[3] Dai D H, Liao B, Xiao S P, et al. Advancements on radar polarization information acquisition and processing. J Radars, 2016, 5: 143-155. Google Scholar

[4] Shi L F, Ren B, Ma J Z, et al. Recent developments of radar anti-interference techniques with polarimetry. Mod Radar, 2016, 38: 1-7+29. Google Scholar

[5] Guifu Zhang , Doviak R J, Zrnic D S. Phased Array Radar Polarimetry for Weather Sensing: A Theoretical Formulation for Bias Corrections. IEEE Trans Geosci Remote Sens, 2009, 47: 3679-3689 CrossRef ADS Google Scholar

[6] Herd J S, Conway M D. The Evolution to Modern Phased Array Architectures. Proc IEEE, 2016, 104: 519-529 CrossRef Google Scholar

[7] Stailey J E, Hondl K D. Multifunction Phased Array Radar for Aircraft and Weather Surveillance. Proc IEEE, 2016, 104: 649-659 CrossRef Google Scholar

[8] Fulton C, Salazar J, Zrnić D, et al. Polarimetric phased array calibration for large-scale multi-mission radar applications. In: Proceedings of 2018 IEEE Radar Conference (RadarConf18), Oklahoma, 2018. 1272--1277. Google Scholar

[9] Zhang G, Mahale V N, Putnam B J. Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction. Adv Atmos Sci, 2019, 36: 571-588 CrossRef ADS Google Scholar

[10] Mirmozafari M, Zhang G, Fulton C, et al. Dual-polarization antennas with high isolation and polarization purity: A review and comparison of cross-coupling mechanisms. IEEE Antennas Propag Mag, 2019, 61: 50-63. Google Scholar

[11] Mirmozafari M, Zhang G, Saeedi S. A Dual Linear Polarization Highly Isolated Crossed Dipole Antenna for MPAR Application. Antennas Wirel Propag Lett, 2017, 16: 1879-1882 CrossRef ADS Google Scholar

[12] Saeidi-Manesh H, Zhang G. High-Isolation, Low Cross-Polarization, Dual- Polarization, Hybrid Feed Microstrip Patch Array Antenna for MPAR Application. IEEE Trans Antennas Propagat, 2018, 66: 2326-2332 CrossRef ADS Google Scholar

[13] Quan X L, Li R L. A Broadband Dual-Polarized Omnidirectional Antenna for Base Stations. IEEE Trans Antennas Propagat, 2013, 61: 943-947 CrossRef ADS Google Scholar

[14] Sallam T, Abdel-Rahman A B, Alghoniemy M. A Neural-Network-Based Beamformer for Phased Array Weather Radar. IEEE Trans Geosci Remote Sens, 2016, 54: 5095-5104 CrossRef ADS Google Scholar

[15] Wang Y L, Wang B H, Lin Y Z. Frequency-invariant pattern synthesis of conformal array antenna with low cross-polarisation. IET Microwaves Antennas Propagation, 2008, 2: 442-450 CrossRef Google Scholar

[16] Jin-Jun Xiao , Nehorai A. Optimal Polarized Beampattern Synthesis Using a Vector Antenna Array. IEEE Trans Signal Process, 2009, 57: 576-587 CrossRef ADS Google Scholar

[17] Li M, Wang X, Dong J. Optimal Difference Pattern Synthesis With Polarization Control for Arbitrary Arrays. Antennas Wirel Propag Lett, 2012, 11: 1358-1361 CrossRef ADS Google Scholar

[18] Liu Y, Liu C, Wang X. Experimental investigation on the synthesis of scanning beam pattern with antenna selection for conformal array. IET Microw Antennas Propag, 2016, 57: 969-975 CrossRef Google Scholar

[19] Ivić I R, Zrnić D S. Statistical evaluation of pulse phase coding to suppress coupling in the polarimetric radar. In: Proceedings of the 36th Conference on Radar Meteorology, Breckenridge, 2013. Google Scholar

[20] Ivic I R. Phase Code to Mitigate the Copolar Correlation Coefficient Bias in PPAR Weather Radar. IEEE Trans Geosci Remote Sens, 2017, 55: 2144-2166 CrossRef ADS Google Scholar

[21] Ivić I R. An experimental evaluation of phase coding to mitigate the cross-coupling biases in PPAR. In: Proceedings of the 38th International Conference on Radar Meteorology, Chicago, 2017. Google Scholar

[22] Pang C, Hoogeboom P, Le Chevalier F. Polarimetric Bias Correction of Practical Planar Scanned Antennas for Meteorological Applications. IEEE Trans Geosci Remote Sens, 2016, 54: 1488-1504 CrossRef ADS Google Scholar

[23] Pang C, Dong J, Wang T. A Polarimetric Calibration Error Model for Dual-Polarized Antenna Element Patterns. Antennas Wirel Propag Lett, 2016, 15: 782-785 CrossRef ADS Google Scholar

[24] Xu X J. New technique for radar scattering signature measurement and processing. Beijing: National Defense Industry Press, 2018. 5-50. Google Scholar

[25] Zhai J Q, Ma L, Yang W J. Polarization calibration technique of fully polarimetric radar. Chin J Radio Sci, 2019, 34: 806-813. Google Scholar

  • Figure 1

    (Color online) The triple feed microstrip patch antenna. (a) Top view; (b) side view

  • Figure 2

    (Color online) The fully polarimetric phased array antenna. (a) The fully polarimetric phased array with 16$\times$16 elements; (b) the digital phased array architecture using the PSC method

  • Figure 3

    (Color online) Patterns of the electric fields for the horizontally and vertically polarized ports when radiating the linear polarization state. (a) Co-polarization pattern of a horizontally polarized port; (b) cross-polarization pattern of a horizontally polarized port; (c) cross-polarization pattern of a vertically polarized port; (d) co-polarization pattern of a vertically polarized port

  • Figure 4

    (Color online) Patterns of the electric fields for the triple feed patch antenna when radiating the circular polarization state. (a) Co-polarization pattern of RHCP; (b) cross-polarization pattern of RHCP; (c) cross-polarization pattern of LHCP; (d) co-polarization pattern of LHCP

  • Figure 5

    (Color online) Patterns of the electric fields for the triple feed patch antenna when radiating the configured elliptical polarization state. (a) Co-polarization pattern of configured RHEP; (b) cross-polarization pattern of configured RHEP; (c) cross-polarization pattern of configured LHEP; (d) co-polarization pattern of configured LHEP

  • Figure 6

    (Color online) CPI of different polarized waves. (a) NC-LP; (b) NC-CP; (c) C-EP

  • Figure 7

    (Color online) The array pattern synthesis results versus different beam direction. Co-polarization pattern when (a) $(\phi~,\theta~)~=~({0^~\circ~},{90^~\circ~})$, (b) $(\phi~,\theta~)~=~({20^~\circ~},{70^~\circ~})$, (c) $(\phi~,\theta~)~=~({40^~\circ~},{50^~\circ~})$, (d) $(\phi~,\theta~)~=~({60^~\circ~},{30^~\circ~})$; cross-polarization pattern when (e) $(\phi~,\theta~)~=~({0^~\circ~},{90^~\circ~})$, (f) $(\phi~,\theta~)~=~({20^~\circ~},{70^~\circ~})$, (g) $(\phi~,\theta~)~=~({40^~\circ~},{50^~\circ~})$, (h) $(\phi~,\theta~)~=~({60^~\circ~},{30^~\circ~})$

  • Figure 8

    (Color online) The 2D cut of synthesized pattern versus different beam direction including the co-polar and cross-polar patterns. (a) $(\phi~,\theta~)~=~({0^~\circ~},{90^~\circ~})$; (b) $(\phi~,\theta~)~=~({20^~\circ~},{90^~\circ~})$; (c) $(\phi~,\theta~)~=~({40^~\circ~},{90^~\circ~})$; (d) $(\phi~,\theta~)~=~({60^~\circ~},{90^~\circ~})$

  • Figure 9

    (Color online) Polarimetric variables versus different polarization states. (a) $\Delta~{Z_{\rm~DR}}$; (b) $\Delta~{\rm~LDR}$

qqqq

Contact and support