SCIENTIA SINICA Informationis, Volume 50 , Issue 11 : 1595(2020) https://doi.org/10.1360/SSI-2020-0079

Theories and techniques for growing software: paradigm and beyond

More info
  • ReceivedApr 1, 2020
  • AcceptedSep 30, 2020
  • PublishedNov 10, 2020


Funded by






[1] Glass R L. Sorting out software complexity. Commun ACM, 2002, 45: 19-21 CrossRef Google Scholar

[2] Marcil L, Hawthornthwaite M. Realizing DO-178C's value by using new technology: OOT, MBDV, TQC & FM. In: Proceedings of the 31st IEEE/AIAA Digital Avionics Systems Conference (DASC), Williamsburg, 2012. 6A3-1-6A3-10. Google Scholar

[3] Udacity. How does the worst project look like? Lasting 12 years, over 6 million lines of code.... [优达学城. 史上最烂的开发项目长啥样: 苦撑12年, 600 多万行代码...]. 2018. https://zhuanlan.zhihu.com/p/38973085/. Google Scholar

[4] Sina Finacial. A U.S. programmer shot four colleagues for not annotating their code. [新浪财经. 美程序员枪击4同事 竟因代码不写注释]. 2018. http://finance.sina.com.cn/stock/usstock/c/2018-09-23/doc-ifxeuwwr7514854.shtml. Google Scholar

[5] Oschina. A programmer complained that he would no longer work for Oracle again. [开源中国. 程序员吐槽: 我永远不会再为 Oracle 工作了]. 2018. https://www.oschina.net/news/101928/about-oracle-database-code. Google Scholar

[6] Huanqiu Tech. DARPA plans to construct software systems that can survive for over 100 years. [环球网科技. DARPA计划开发一套可使用100多年的自适应软件]. 2018. https://tech.huanqiu.com/article/9CaKrnJJO38. Google Scholar

[7] Brooks F P. The Mythical Man-Month. Hoboken: Addison-Wesley Professional, 1975. Google Scholar

[8] Brooks . No Silver Bullet Essence and Accidents of Software Engineering. Computer, 1987, 20: 10-19 CrossRef Google Scholar

[9] Beck K. Extreme Programming Explained: Embrace Change. Hoboken: Addison-Wesley Professional, 2000. Google Scholar

[10] Bass L, Weber I, Zhu L. DevOps: A Software Architect's Perspective. Hoboken: Addison-Wesley Professional, 2015. Google Scholar

[11] GammaE. Design patterns: elements of reusable object-oriented software. Pearson Education India, 1995. Google Scholar

[12] FowlerM. Refactoring: Improving the Design of Existing Code. Hoboken: Addison-Wesley Professional, 2018. Google Scholar

[13] NgT H, Cheung S C, Chan W K, et al. Work experience versus refactoring to design patterns: a controlled experiment. In: Proceedings of the 14th ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE 2006), Portland, 2006. 12--22. Google Scholar

[14] NgT H, Cheung S C, Chan W K, et al. Do maintainers utilize deployed design patterns effectively? In: Proceedings of the 29th International Conference on Software Engineering (ICSE 2007), Minneapolis, 2007. 168--177. Google Scholar

[15] Lin H M. Program Automation. In: Proceedings of Workshop on Oppotunities and Challenges of Software Automation in the Era of Big Data, Yanxi Lake Conference, 2018. Google Scholar

[16] Lü J, Ma X, Huang Y, et al. Internetware: a shift of software paradigm. In: Proceedings of the 1st Asia-Pacific Symposium on Internetware (Internetware 2009), Beijing, 2009. 1--9. Google Scholar

[17] Mei H, Huang G, Xie T. Internetware: A Software Paradigm for Internet Computing. Computer, 2012, 45: 26-31 CrossRef Google Scholar

[18] Li W, Wang H M, Wu W J. 复杂软件系统的成长性构造与适应性演化. Sci Sin-Inf, 2014, 44: 743-761 CrossRef Google Scholar

[19] Wang H, Ding B. Growing construction and adaptive evolution of complex software systems. Sci China Inf Sci, 2016, 59: 050101 CrossRef Google Scholar

[20] Guo B, Wang H, Xu C, et al. GEAS: generic adaptive scheduling for high-efficiency context inconsistency detection. In: Proceedings of the 33rd IEEE International Conference on Software Maintenance and Evolution (ICSME 2017), Shanghai, 2017. 137--147. Google Scholar

[21] Wang H, Xu C, Guo B. Generic Adaptive Scheduling for Efficient Context Inconsistency Detection. IIEEE Trans Software Eng, 2019, : 1-1 CrossRef Google Scholar

[22] Gu T, Ma X, Xu C, et al. Automating object transformations for dynamic software updating via online execution synthesis. In: Proceedings of the 32nd European Conference on Object-Oriented Programming (ECOOP 2018), Amsterdam, 2018. 1--28. Google Scholar

[23] Magill S, Hicks M, Subramanian S, et al. Automating object transformations for dynamic software updating. In: Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA 2012), Tucson, 2012. 265--280. Google Scholar

[24] Kramer J, Magee J. The evolving philosophers problem: dynamic change management. IIEEE Trans Software Eng, 1990, 16: 1293-1306 CrossRef Google Scholar

[25] Yang W, Xu C, Pan M. Efficient validation of self-adaptive applications by counterexample probability maximization. J Syst Software, 2018, 138: 82-99 CrossRef Google Scholar

[26] Yang W, Xu C, Pan M. Improving Verification Accuracy of CPS by Modeling and Calibrating Interaction Uncertainty. ACM Trans Internet Technol, 2018, 18: 1-37 CrossRef Google Scholar

[27] Shen Y, Jiang Y, Xu C, et al. ReScue: crafting regular expression DoS attacks. In: Proceedings of the 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2018), Montpellier, 2018. 225--235. Google Scholar

[28] LiZ, Ma X, Xu C, et al. Structural coverage criteria for neural networks could be misleading. In: Proceedings of the 41st ACM/IEEE International Conference on Software Engineering (ICSE 2019 NIER), Montreal, 2019. 89--92. Google Scholar

[29] WangH, Xu J, Xu C, et al. DISSECTOR: input validation for deep learning applications by crossing-layer dissection. In: Proceedings of the 42nd ACM/IEEE International Conference on Software Engineering (ICSE 2020), Seoul, 2020. Google Scholar

[30] WangX, Wang H, Su Z, et al. Global optimization of numerical programs via prioritized stochastic algebraic transformations. In: Proceedings of the 41st ACM/IEEE International Conference on Software Engineering (ICSE), Montreal, 2019. 1131--1141. Google Scholar

[31] Zhang X, Qian Z, Zhang S, et al. COBRA: toward provably efficient semi-clairvoyant scheduling in data analytics systems. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Honolulu, 2018. 513--521. Google Scholar

[32] Wang X, Chen M, Lu S. Modeling Geographically Correlated Failures to Assess Network Vulnerability. IEEE Trans Commun, 2018, 66: 6317-6328 CrossRef Google Scholar

[33] Song W, Jacobsen H A, Cheung S C. Workflow Refactoring for Maximizing Concurrency and Block-Structuredness. IEEE Trans Serv Comput, 2018, : 1-1 CrossRef Google Scholar

[34] Yuan Z, Chen X, Liu J. Simplifying the Formal Verification of Safety Requirements in Zone Controllers Through Problem Frames and Constraint-Based Projection. IEEE Trans Intell Transp Syst, 2018, 19: 3517-3528 CrossRef Google Scholar