logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 3 : 468(2021) https://doi.org/10.1360/SSI-2020-0008

Data-driven multimedia edge network and content delivery

More info
  • ReceivedFeb 3, 2020
  • AcceptedApr 22, 2020
  • PublishedMar 2, 2021

Abstract


Funded by

国家自然科学基金面上项目(61872215)

国家自然科学基金重大项目(U1611461)


References

[1] Wang Z, Li B, Sun L, et al. Cloud-based Social Application Deployment using Local Processing and Global Distribution In: Proceedings of ACM International Conference on Emerging Networking Experiments and Technologies (CoNEXT), 2012. Google Scholar

[2] Wang M, Xu C, Chen X. Differential Privacy Oriented Distributed Online Learning for Mobile Social Video Prefetching. IEEE Trans Multimedia, 2019, 21: 636-651 CrossRef Google Scholar

[3] Kaplan A M, Haenlein M. Users of the world, unite The challenges and opportunities of Social Media. Business Horizons, 2010, 53: 59-68 CrossRef Google Scholar

[4] Cha M, Kwak H, Rodriguez P, et al. I tube, you tube, everybody tubes: analyzing the world's largest user generated content video system In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, 2007. 1--14. Google Scholar

[5] Li H, Wang H, Liu J. Video sharing in online social network: measurement and analysis In: Proceedings of ACM Network and Operating System Support for Digital Audio and Video (NOSSDAV) 2012. Google Scholar

[6] Cheng X, Dale C, Liu J. Statistics and social network of Youtube videos In: Proceedings of IEEE International Workshop on Quality of Service (IWQoS), 2008. Google Scholar

[7] Benevenuto F, Rodrigues T, Almeida V. Video interactions in online video social networks. ACM Trans Multimedia Comput Commun Appl, 2009, 5: 1-25 CrossRef Google Scholar

[8] Lemlouma T, Laya"ıda N. Context-aware adaptation for mobile devices In: Proceedings of IEEE International Conference on Mobile Data Management, 2004. Google Scholar

[9] Li Z, Huang Y, Liu G, et al. Cloud transcoder: bridging the format and resolution gap between internet videos and mobile devices In: Proceedings of ACM Network and Operating System Support for Digital Audio and Video (NOSSDAV), 2012. Google Scholar

[10] Bakshy E, Hofman J, Mason W, et al. Everyone's an influencer: quantifying influence on Twitter In: Proceedings of ACM International Conference on Web Search and Data Mining (WSDM), 2011. Google Scholar

[11] Davidson J, Liebald B, Liu J, et al. The YouTube video recommendation system In: Proceedings of ACM Recommender Systems, 2010. Google Scholar

[12] Debnath S, Ganguly N, Mitra P. Feature weighting in content based recommendation system using social network analysis In: Proceedings of ACM International Conference on World Wide Web (WWW), 2008. Google Scholar

[13] Walter F E, Battiston S, Schweitzer F. A model of a trust-based recommendation system on a social network. Auton Agent Multi-Agent Syst, 2008, 16: 57-74 CrossRef Google Scholar

[14] Isaacman S, Ioannidis S, Chaintreau A, et al. Distributed rating prediction in user generated content streams In: Proceedings of ACM Recommender Systems, 2011. Google Scholar

[15] Saxena M, Sharan U, Fahmy S. Analyzing video services in Web 2.0: a global perspective In: Proceedings of ACM Network and Operating System Support for Digital Audio and Video (NOSSDAV), 2008. Google Scholar

[16] Ager B, Mühlbauer W, Smaragdakis G, et al. Web content cartography In: Proceedings of ACM Internet Measurement Conference (IMC), 2011. Google Scholar

[17] Adhikari V, Jain S, Chen Y, et al. Reverse engineering the YouTube video delivery cloud In: Proceedings of IEEE Hot Topics in Media Delivery Workshop, 2011. Google Scholar

[18] Myers R, Montgomery D, Vining G, et al. Generalized Linear Models Wiley, 2010. Google Scholar

[19] Witten I, Frank E, Hall M. Data Mining: Practical Machine Learning Tools and Techniques San Francisco: Morgan Kaufmann, 2011. Google Scholar

[20] Xu C, Jia S, Zhong L. Socially aware mobile peer-to-peer communications for community multimedia streaming services. IEEE Commun Mag, 2015, 53: 150-156 CrossRef Google Scholar

[21] West R, Zaroo P, Waldspurger C A. Online cache modeling for commodity multicore processors. SIGOPS Oper Syst Rev, 2010, 44: 19-29 CrossRef Google Scholar

[22] Frank B, Poese I, Lin Y. Pushing CDN-ISP collaboration to the limit. SIGCOMM Comput Commun Rev, 2013, 43: 34-44 CrossRef Google Scholar

[23] Carlsson N, Dán G, Eager D, et al. Tradeoffs in cloud and peer-assisted content delivery systems In: Proceedings of IEEE International Conference on Peer-to-Peer Computing (P2P), 2012. Google Scholar

[24] Cervino J, Rodriguez P, Trajkovska I, et al. Testing a cloud provider network for hybrid P2P and cloud streaming architectures In: Proceedings of the 4th IEEE International Conference on Cloud Computing, 2011. Google Scholar

[25] Jin X, Kwok Y, Network aware P2P multimedia streaming: capacity or locality? In: Proceedings of IEEE International Conference on Peer-to-Peer Computing (P2P), 2011. 54--63. Google Scholar

[26] Xu C, Wang M, Chen X. Optimal Information Centric Caching in 5G Device-to-Device Communications. IEEE Trans Mobile Comput, 2018, 17: 2114-2126 CrossRef Google Scholar

[27] Jacobson V, Mosko M, Smetters D, et al. Content-centric networking. Whitepaper, Palo Alto Research Center, 2007. 2--4. Google Scholar

[28] Lederer S, Mueller C, Rainer B, et al. An experimental analysis of dynamic adaptive streaming over http in content centric networks. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), 2013. Google Scholar

[29] Zhang X, Wang N, Vassilakis V G. A distributed in-network caching scheme for P2P-like content chunk delivery. Comput Networks, 2015, 91: 577-592 CrossRef Google Scholar

[30] Ma M, Wang Z, Su K, et al. Understanding content placement strategies in smartrouter-based peer video CDN In: Proceedings of ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), 2016. Google Scholar

[31] Davis A, Parikh J, Weihl W. Edgecomputing: extending enterprise applications to the edge of the Internet In: Proceedings of ACM International Conference on World Wide Web (WWW), 2004. Google Scholar

[32] Wang Z, Sun L, Chen X, et al. Propagation-based social-aware replication for social video contents In: Proceedings of ACM International Conference on Multimedia (Multimedia), 2012. Google Scholar

[33] Wu Y, Wu C, Li B, et al. Scaling social media applications into geo-distributed clouds In: Proceedings of IEEE International Conference on Distributed Computing Systems (INFOCOM), 2012. Google Scholar

[34] Xu D, Kulkarni S S, Rosenberg C. Analysis of a CDN-P2P hybrid architecture for cost-effective streaming media distribution. Multimedia Syst, 2006, 11: 383-399 CrossRef Google Scholar

[35] Adhikari V K, Guo Y, Hao F, et al. Unreeling netflix: understanding and improving multi-CDN movie delivery In: Proceedings of IEEE International Conference on Distributed Computing Systems (INFOCOM), 2012. Google Scholar

[36] Kangasharju J, Roberts J, Ross K W. Object replication strategies in content distribution networks. Comput Commun, 2002, 25: 376-383 CrossRef Google Scholar

[37] Cheng X, Liu J. NetTube: exploring social networks for peer-to-peer short video sharing In: Proceedings of IEEE International Conference on Distributed Computing Systems (INFOCOM), 2009. Google Scholar

[38] Benevenuto F, Rodrigues T, Cha M, et al. Characterizing user behavior in online social networks In: Proceedings of ACM Internet Measurement Conference (IMC), 2009. Google Scholar

[39] Li H, Liu J, Xu K, et al. Understanding video propagation in online social networks In: Proceedings of IEEE International Workshop on Quality of Service (IWQoS), 2012. Google Scholar

[40] Li Z, Shen H, Wang H, et al. Socialtube: P2P-assisted video sharing in online social networks. In: Proceedings of IEEE International Conference on Distributed Computing Systems (INFOCOM), 2012. Google Scholar

[41] Nguyen K, Pham C, Tran D, et al. Preserving social locality in data replication for social networks In: Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) Workshop on Simplifying Complex Networks for Practitioners, 2011. Google Scholar

[42] Wang Z, Sun L, Yang S, et al. Prefetching strategy in peer-assisted social video streaming. In: Proceedings of ACM International Conference on Multimedia (Multimedia), 2011. Google Scholar

[43] Chen F, Guo K, Lin J, et al. Intra-cloud lightning: building CDNs in the cloud In: Proceedings of IEEE International Conference on Distributed Computing Systems (INFOCOM), 2012. Google Scholar

[44] Fangming Liu , Ye Sun , Bo Li . FS2You: Peer-Assisted Semipersistent Online Hosting at a Large Scale. IEEE Trans Parallel Distrib Syst, 2010, 21: 1442-1457 CrossRef Google Scholar

[45] Furht B, Escalante A. Handbook of Cloud Computing New York: Springer-Verlag, 2010. Google Scholar

[46] Rimal B, Choi E, Lumb I. A taxonomy and survey of cloud computing systems In: Proceedings of IEEE International Joint Conference on INC, IMS and IDC, 2009. Google Scholar

[47] Chohan N, Bunch C, Pang S, et al. AppScale: Scalable and Open AppEngine Application Development and Deployment Cloud Computing, 2010, 34(2): 57--70. Google Scholar

[48] Hofmann P, Woods D. IEEE Internet Comput, 2010, 14: 90-93 CrossRef Google Scholar

[49] Agarwal S, Dunagan J, Jain N, et al. Volley: automated data placement for geo-distributed cloud services. In: Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, 2010. Google Scholar

[50] Li A, Yang X, Kandula S, et al. CloudCmp: comparing public cloud providers In: Proceedings of ACM Internet Measurement Conference (IMC), 2010. Google Scholar

[51] Rehman Z, Hussain F, Hussain O. Towards multi-criteria cloud service selection. In: Proceedings of IEEE International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2011. Google Scholar

[52] Huang Y, Li Z, Liu G, et al. Cloud download: using cloud utilities to achieve high-quality content distribution for unpopular videos In: Proceedings of ACM International Conference on Multimedia (Multimedia), 2011. Google Scholar

[53] Miller M. Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online Hoboken: Que Publishing, 2008. Google Scholar

[54] Wang F, Liu J, Chen M. CALMS: cloud-assisted live media streaming for globalized demands with time/region diversities In: Proceedings of IEEE International Conference on Distributed Computing Systems (INFOCOM), 2012. Google Scholar

[55] Wang X, Chen M, Taleb T. Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag, 2014, 52: 131-139 CrossRef Google Scholar

[56] Bastug E, Bennis M, Debbah M. Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Commun Mag, 2014, 52: 82-89 CrossRef Google Scholar

[57] Poularakis K, Iosifidis G, Tassiulas L. Approximation Algorithms for Mobile Data Caching in Small Cell Networks. IEEE Trans Commun, 2014, 62: 3665-3677 CrossRef Google Scholar

[58] Khreishah A, Chakareski J, Gharaibeh A. Joint Caching, Routing, and Channel Assignment for Collaborative Small-Cell Cellular Networks. IEEE J Sel Areas Commun, 2016, 34: 2275-2284 CrossRef Google Scholar

[59] Gharaibeh A, Khreishah A, Ji B. A Provably Efficient Online Collaborative Caching Algorithm for Multicell-Coordinated Systems. IEEE Trans Mobile Comput, 2016, 15: 1863-1876 CrossRef Google Scholar

[60] Bharath B N, Nagananda K G, Poor H V. A Learning-Based Approach to Caching in Heterogenous Small Cell Networks. IEEE Trans Commun, 2016, 64: 1674-1686 CrossRef Google Scholar

[61] Li Z, Wilson C, Xu T, et al. Offline downloading in china: a comparative study, In: Proceedings of Proceedings of the 2015 ACM Conference on Internet Measurement Conference, 2015. 473--486. Google Scholar

[62] Chen L, Zhou Y, Jing M, et al. Thunder crystal: a novel crowdsourcing-based content distribution platform. In: Proceedings of the 25th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, 2015. 43--48. Google Scholar

[63] Ma M, Wang Z, Su K, et al. Understanding content placement strategies in smartrouter-based peer video CDN. In: Proceedings of the 26th International Workshop on Network and Operating Systems Support for Digital Audio and Video, 2016. 7. Google Scholar

[64] Gharaibeh A, Khreishah A, Ji B. A Provably Efficient Online Collaborative Caching Algorithm for Multicell-Coordinated Systems. IEEE Trans Mobile Comput, 2016, 15: 1863-1876 CrossRef Google Scholar

[65] Cha M, Mislove A, Gummadi K. A measurement-driven analysis of information propagation in the flickr social network In: Proceedings of ACM International Conference on World Wide Web (WWW), 2009. Google Scholar

[66] Mislove A. Rethinking web content distribution in the social media era In: Proceedings of NSF Workshop on Social Networks and Mobility in the Cloud, 2012. Google Scholar

[67] Wang Z, Liu J, Zhu W. Social Video Content Delivery. Berlin: Springer, 2016. Google Scholar

[68] Ye S, Wu F. Measuring message propagation and social influence on Twitter.com. IJCNDS, 2013, 11: 59-76 CrossRef Google Scholar

[69] Scellato S, Mascolo C, Musolesi M, et al. Distance matters: geo-social metrics for online social networks In: Proceedings of USENIX Conference on Online Social Networks, 2010. Google Scholar

[70] Huffaker B, Fomenkov M, Plummer D, et al. Distance metrics in the Internet In: Proceedings of IEEE International Telecommunications Symposium, 2002. Google Scholar

[71] Yang K S, Shekhar A H, Oliver D. Capacity-Constrained Network-Voronoi Diagram. IEEE Trans Knowl Data Eng, 2015, 27: 2919-2932 CrossRef Google Scholar

[72] Kaashoek M F, Karger D R, Koorde: A simple degree-optimal distributed hash table. In: Proceedings of International Workshop on Peer-to-Peer Systems. Berlin: Springer, 2003. 98--107. Google Scholar

[73] O'reilly T. What is web 2.0. 2005. Google Scholar

[74] Scellato S, Mascolo C, Musolesi M, et al. Track globally, deliver locally: improving content delivery networks by tracking geographic social cascades In: Proceedings of ACM International Conference on Multimedia (Multimedia), 2011. Google Scholar

[75] Brewington B, Cybenko G. How dynamic is the web? Comput Netw, 2000, 33: 257--276. Google Scholar

[76] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media? In: Proceedings of ACM International Conference on World Wide Web (WWW), 2010. Google Scholar

[77] Wang Z, Zhu W, Chen M. CPCDN: Content Delivery Powered by Context and User Intelligence. IEEE Trans Multimedia, 2015, 17: 92-103 CrossRef Google Scholar

[78] Dhillon I. Co-clustering documents and words using bipartite spectral graph partitioning In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2001. Google Scholar

[79] Brodersen A, Scellato S, Wattenhofer M. YouTube around the world: geographic popularity of videos In: Proceedings of ACM International Conference on World Wide Web (WWW), 2012. Google Scholar

[80] Wang H, Xu F, Li Y, et al. Understanding mobile traffic patterns of large scale cellular towers in urban environment. In: Proceedings of Proceedings of the 2015 ACM Conference on Internet Measurement Conference, 2015. 225--238. Google Scholar

[81] Ma G, Wang Z, Zhang M. Understanding Performance of Edge Content Caching for Mobile Video Streaming. IEEE J Sel Areas Commun, 2017, 35: 1076-1089 CrossRef Google Scholar

[82] Hu W, Wang Z, Ma M. Edge Video CDN: A Wi-Fi Content Hotspot Solution. J Comput Sci Technol, 2016, 31: 1072-1086 CrossRef Google Scholar

[83] Levi R, Shmoys D B, Swamy C. Lp-based approximation algorithms for capacitated facility location. In: Proceedings of International Conference on Integer Programming and Combinatorial Optimization. Berlin: Springer, 2004. 206--218. Google Scholar

[84] Gavet Y, Pinoli J C. A Geometric Dissimilarity Criterion Between Jordan Spatial Mosaics. Theoretical Aspects and Application to Segmentation Evaluation. J Math Imag Vis, 2012, 42: 25-49 CrossRef Google Scholar

[85] Li Z, Lin J, Akodjenou M I, et al. Watching videos from everywhere: a study of the PPTV mobile VOD system. In: Proceedings of the 2012 ACM Conference on Internet Measurement Conference, 2012. 185--198. Google Scholar

[86] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 2003, 50: 159-175 CrossRef Google Scholar

[87] Dán G, Carlsson N. Dynamic content allocation for cloud-assisted service of periodic workloads. In: Proceedings of IEEE INFOCOM 2014-IEEE Conference on Computer Communications, 2014. 853--861. Google Scholar

[88] Ma M, Wang Z, Yi K, et al. Joint request balancing and content aggregation in crowdsourced CDN. In: Proceedings of 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), 2017. 1178--1188. Google Scholar

[89] Mills T. Time Series Techniques for Economists Cambridge: Cambridge University Press, 1991. Google Scholar

  • Figure 1

    Research framework

  • Figure 2

    (Color online) Number of regions involved in propagation versus the rank of content

  • Figure 3

    Propagation-based content deployment

  • Figure 4

    (Color online) CPCDN based on data-driven strategies

  • Figure 5

    Importance of content elements in web content distribution

  • 图 6

    (网络版彩图) 内容传播的转发数量与用户关注者数量关系

  • 图 7

    (网络版彩图) 全局参与的转发数量与本地参与的转发数量关系

  • Figure 8

    (Color online)Voronoi-based region segmentation: (a)$\sim$(c) show the segmentation results, where the original region is divided into sub-region 2, 3 and 4

  • Figure 9

    (Color online) Load prediction for content hotspots

  • Table 1   Impact of different network topologies on social multimedia content distribution
    Scalability Distributed Processing capability Stability Cost
    Centralized ( [21,22]) Normal Weak Weak High High
    Peer-to-Peer ( [23-25]) Strong Strong Weak Low Low
    CCN ( [26-29]) Strong Normal Weak High High
    Cloud-based ( [30-32]) Strong Normal Strong High Low
    Edge-based ( [33-35]) Strong Strong Normal High Low
  • Table 2   Download speed measurement (May 4, 2013)
    Beijing Zhejiang Guangxi Shaanxi
    China Telecom 366.8 281.4 338.7 249.4
    China Unicom 512.2 462.8
    China Mobile 491.8
  • Table 3   Mobility migration matrix
    From/To Business Hospital Residence Campus Attraction Shoppingmall Hotel
    Business 4908 2205 5114 1379 595 1082 657
    Hospital 2223 1741 3479 802 394 698 360
    Residence 5145 3425 9994 1787 995 1727 907
    Campus 1369 797 1743 843 230 367 222
    Attraction 596 399 984 215 183 187 123
    Shoppingmall 1101 692 1671 358 234 494 169
    Hotel 616 367 928 214 114 202 213
  • Table 4   Important notations in this paper
    Notation Definition
    $\mathcal{A}$ Set of candidate edge devices
    $\mathcal{A}^*$ Set of edge devices for content distribution
    $\mathcal{R}$ Set of regions
    $\mathcal{E}=\{1,2,\ldots,E\}$ Set of user requests
    $\mathcal{U}$ Set of users
    $\mathcal{V}$ Set of content items
    ${\boldsymbol~P}$ User partition
    $W(r)\rightarrow~v$ Mapping from request $r\in~\mathcal{E}$ to content $v\in~\mathcal{V}$
    $E_{a}$ Number of aggregated requests $a~\in~\mathcal{A}^*$
    $f_{ij}$ Number of requests redirected from edge device $i$ to $j$
    $o_{a},~u_{a}$ Storage and bandwidth capacity of device $a$
    $f_{a}$ Upgrade cost for device $a$
    $d_{ea}$ Distance between user $e$ and edge device $a$
    $s_{a}~\in~\{0,1\}$ Decision variable for device $a$
    $x_{ea}\in~\{0,1\}$ Decision variable for device $a$ to serve user $e$
    $\lambda~\in~[0,1]$ Optimization weight
    $w_{e}$ Preference for request $e$ to be redirected
    $\alpha$, $\beta$, $\gamma$ Control parameters