logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 7 : 1168(2021) https://doi.org/10.1360/SSI-2020-0007

Multi-carrier modulation scheme based on prolate spheroidal wave functions with signal grouping optimization

More info
  • ReceivedJan 9, 2020
  • AcceptedApr 27, 2020
  • PublishedJun 4, 2021

Abstract


Funded by

国家自然科学基金资助项目(61701518)

山东省“泰山学者"建设工程专项经费基金项目(ts20081130)


References

[1] Lien S Y, Shieh S L, Huang Y. 5G New Radio: Waveform, Frame Structure, Multiple Access, and Initial Access. IEEE Commun Mag, 2017, 55: 64-71 CrossRef Google Scholar

[2] You X, Wu H, Tan X. AI for 5G: research directions and paradigms. Sci Sin-Inf, 2018, 48: 1589-1602 CrossRef Google Scholar

[3] Zhang W, Wang C X, Ge X. Enhanced 5G Cognitive Radio Networks Based on Spectrum Sharing and Spectrum Aggregation. IEEE Trans Commun, 2018, 66: 6304-6316 CrossRef Google Scholar

[4] Cai Y, Qin Z, Cui F. Modulation and Multiple Access for 5G Networks. IEEE Commun Surv Tutorials, 2018, 20: 629-646 CrossRef Google Scholar

[5] Slepian D, Pollak H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I. Bell Syst Tech J, 1961, 1: 43--46. Google Scholar

[6] Wang H X, Lu F P, Liu C H, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal. J Electron Inform Technol, 2017, 39: 1319--1325. Google Scholar

[7] Osipov A, Rokhlin V, Xiao H. Prolate Spheroidal Wave Functions of Order Zero. Berlin: Springer, 2013. Google Scholar

[8] Zhao Z Y, Wang H X, Liu X G, et al. Orthogonal prolate spheroidal wave functions modulation method. J Electron Inform Technol, 2012, 10: 2331--2335. Google Scholar

[9] Zhao Z Y, Zhou H J, Mao Z Y, et al. Orthogonal carrier modulation based on prolate spheroidal wave function. Syst Eng Electron, 2014, 3: 2533--2537. Google Scholar

[10] Chen Z N, Wang H X, Mao Z Y, et al. A multidimensional constellation demodulation method for broadband satellite communication signals. Acta Aeronaut et Astronaut Sin, 2013, 3: 828--837. Google Scholar

[11] Chen Z, Wang H, Liu X. Maximal capacity nonorthogonal pulse shape modulation. Chin J Aeronautics, 2015, 28: 1699-1708 CrossRef Google Scholar

[12] Lu F P, Wang H X, Liu C H, et al. Power domain non-orthogonal pulse modulation based on prolate spheroidal wave function. Acta Aeronaut et Astronaut Sin, 2019, 9: 323102. Google Scholar

[13] Wen M, Zheng B, Kim K J. A Survey on Spatial Modulation in Emerging Wireless Systems: Research Progresses and Applications. IEEE J Sel Areas Commun, 2019, 37: 1949-1972 CrossRef Google Scholar

[14] Li Q, Wen M, Basar E. Spatial Modulation-Aided Cooperative NOMA: Performance Analysis and Comparative Study. IEEE J Sel Top Signal Process, 2019, 13: 715-728 CrossRef ADS Google Scholar

[15] Basar E, Wen M, Mesleh R. Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access, 2017, 5: 16693-16746 CrossRef Google Scholar

[16] Basar E, Aygolu U, Panayirci E. Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Trans Signal Process, 2013, 61: 5536-5549 CrossRef ADS Google Scholar

[17] Mao T, Wang Z, Wang Q. Dual-Mode Index Modulation Aided OFDM. IEEE Access, 2017, 5: 50-60 CrossRef Google Scholar

[18] Li Q, Wen M, Basar E. Index Modulated OFDM Spread Spectrum. IEEE Trans Wireless Commun, 2018, 17: 2360-2374 CrossRef Google Scholar

[19] Lavanya G, Arpita T. Filtered OFDM with index modulation. In: Proceedings of International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, 2018. 1631--1635. Google Scholar

[20] Zhang J, Zhao M J, Zhang L, et al. Circular convolution filter bank multi-carrier (FBMC) system with index modulation. In: Proceedings of IEEE Vehicular Technology Conference, Toronto, 2017. Google Scholar

[21] Wen M, Basar E, Li Q. Multiple-Mode Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Trans Commun, 2017, 65: 3892-3906 CrossRef Google Scholar

[22] Li J, Dang S, Wen M. Layered Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Syst J, 2019, 13: 3793-3802 CrossRef ADS Google Scholar

[23] Wen M, Ye B, Basar E. Enhanced Orthogonal Frequency Division Multiplexing With Index Modulation. IEEE Trans Wireless Commun, 2017, 16: 4786-4801 CrossRef Google Scholar

[24] Kang J, Wang H, Lu F. Strict parity symmetric prolate spheroidal wave functions signal construction and low complexity detection method. Sci Sin-Inf, 2020, 50: 766-776 CrossRef Google Scholar

[25] Guo S, Zhang H, Zhang P. Signal Shaping for Generalized Spatial Modulation and Generalized Quadrature Spatial Modulation. IEEE Trans Wireless Commun, 2019, 18: 4047-4059 CrossRef Google Scholar

[26] Zheng B, Wen M, Basar E. Multiple-Input Multiple-Output OFDM With Index Modulation: Low-Complexity Detector Design. IEEE Trans Signal Process, 2017, 65: 2758-2772 CrossRef ADS Google Scholar

[27] Zheng B, Chen F, Wen M. Low-Complexity ML Detector and Performance Analysis for OFDM With In-Phase/Quadrature Index Modulation. IEEE Commun Lett, 2015, 19: 1893-1896 CrossRef Google Scholar

[28] Lu F P, Liu C H, Kang J F. Index modulation signal detection method based on order statistic. Radio Commun Technol, 2019, 45: 61--65. Google Scholar

[29] Nissel R, Schwarz S, Rupp M. Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications. IEEE J Sel Areas Commun, 2017, 35: 1768-1782 CrossRef Google Scholar

[30] Ge X, Huang K, Wang C X. Capacity Analysis of a Multi-Cell Multi-Antenna Cooperative Cellular Network with Co-Channel Interference. IEEE Trans Wireless Commun, 2011, 10: 3298-3309 CrossRef Google Scholar

[31] Guo S, Zhang H, Jin S. Spatial Modulation via 3-D Mapping. IEEE Commun Lett, 2016, 20: 1096-1099 CrossRef Google Scholar

  • Figure 1

    (Color online) Block diagram of MCM-PSWFs with signal grouping optimization. (a) Transmitter; (b) rwceiver

  • Figure 2

    (Color online) Block diagram of the $\alpha~$th sub-block creator

  • Figure 3

    (Color online) BER performance of different MCM schemes. (a) $n=8$; (b) $n=7$; (c) $n=10$; (d) $n=16$

  • Figure 4

    (Color online) PSD of different MCM schemes. (a) $B=180$ kHz, $n=8$; (b) $B=230$ Hz, $n=7$; (c) $B=$protect łinebreak1.44 MHz, $n=4$

  • Figure 5

    (Color online) CCDF of different MCM schemes. (a) $B=180$ kHz, $n=8$; (b) $B=230$ Hz, $n=7$; (c) $B=$protect łinebreak1.44 MHz, $n=4$

  • Figure 6

    (Color online) The complexity of the proposed method. (a) Complexity of signal index detection; (b) complexity of MCM-PSWFs-SGO

  • Table 1   The SE of different MCM schemes
    $n/k$ $E_{b}/N_{0}$, SE MCM-PSWFs-SGO-2PAM OFDM-IM-8QAM FOFDM-IM-8QAM FBMC-IM-8OQAM
    $E_{b}/N_{0}$ (dB) 9.65 11.81 11.81 11.81
    8/4 SE (bit/s/Hz) 2.27 2.08 2.04 2.01
    Degree (%) 9.1 11.3 12.9
    $E_{b}/N_{0}$ (dB) 11.05 12.36 12.36 12.36
    10/7 SE (bit/s/Hz) 2.41 2.34 1.61 1.60
    Degree (%) 43.5 49.7 50.6
  • Table 2   Computational complexity of different MCM schemes
    Modulation scheme Computational complexity (CMs) $B=1.44$ MHz
    CP-OFDM [29] $O(XN_{c}{\text{lo}}{{\text{g}}_2}XN_{c})$ ${\mathbf{1}}.{\mathbf{02}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{4}}}$
    OFDM-IM [16] $O(XN_{c}{\text{lo}}{{\text{g}}_2}XN_{c}+gn{\text{lo}}{{\text{g}}_2}n+Mgn)$ ${\mathbf{2}}.{\mathbf{46}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{4}}}$
    F-OFDM-IM [19] $O(XN_{c}{\text{lo}}{{\text{g}}_2}XN_{c}++2XN_{F}N_{c}+gn{\text{lo}}{{\text{g}}_2}n+Mgn)$ ${\mathbf{2}}.{\mathbf{46}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{5}}}$
    FBMC-IM [29] $O(KXN_{c}{\text{lo}}{{\text{g}}_2}XN_{c}+2KXN_{c}+gn{\text{lo}}{{\text{g}}_2}n+Mgn)$ ${\mathbf{4}}.{\mathbf{54}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{4}}}$
    MCOM-PSWFs [24] $O(XN_{c}^{2})$ ${\mathbf{9}}.{\mathbf{52}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{4}}}$
    PSWFs-NPSM [12] $O(2XN_{c}^{2})$ ${\mathbf{2}}.{\mathbf{48}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{5}}}$
    MCM-PSWFs-SGO $O(XN_{c}^{2}+gn{\text{lo}}{{\text{g}}_2}n)$ ${\mathbf{9}}.{\mathbf{01}}~\times~{\mathbf{1}}{{\mathbf{0}}^{\mathbf{4}}}$
qqqq

Contact and support