logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 12 : 1932(2020) https://doi.org/10.1360/SSI-2019-0279

Compensation for time-tag bias of Doppler measurement from Chang'e-3 probe

More info
  • ReceivedDec 13, 2019
  • AcceptedFeb 6, 2020
  • PublishedOct 20, 2020

Abstract


References

[1] 孟 , 张 , 叶 . 嫦娥二号卫星技术成就与中国深空探测展望. Sci Sin Tech, 2013, 43: 467-477 CrossRef Google Scholar

[2] Wu X Y, Zhang H H, Zhang T X. The technical design and achievements of Chang’E-3 probe. Sci Sin Tech, 2014, 44: 331-343 CrossRef Google Scholar

[3] Chen C L, Zhang Z F, Peng J. Technique design and realization of the circumlunar return and reentry spacecraft of 3rd phase of Chinese lunar exploration program. Sci Sin Tech, 2015, 45: 111-123 CrossRef Google Scholar

[4] Huang Y, Li P J, Fan M. Orbit determination of CE-5T1 in Earth-Moon L2 libration point orbit with ground tracking data. Sci Sin-Phys Mech Astron, 2018, 48: 079501 CrossRef ADS Google Scholar

[5] Zhang L H, Xiong L, Sun J. Technical characteristics of the relay communication satellite “Queqiao” for Chang’e-4 lunar farside exploration mission. Sci Sin Tech, 2019, 49: 138-146 CrossRef Google Scholar

[6] Ye P J, Sun Z Z, Zhang H. Mission design of Chang’e-4 probe system. Sci Sin Tech, 2019, 49: 124-137 CrossRef Google Scholar

[7] Dong G L, Li H T, Hao W H, et al. Development and future of China's deep space TT&C system(in Chinese). J Deep Space Explor, 2018, 5: 99--114. Google Scholar

[8] 胡 , 郑 , 李 . “嫦娥三号”月球探测器的轨道确定和月面定位. Chin Sci Bull, 2014, 59: 2268-2277 CrossRef Google Scholar

[9] Iess L, Stevenson D J, Parisi M. The Gravity Field and Interior Structure of Enceladus. Science, 2014, 344: 78-80 CrossRef ADS Google Scholar

[10] Armstrong J. Low-frequency Gravitational Wave Searches using Spacecraft Doppler Tracking. Living Reviews in Relativity, 2006, 9(1): 1-2. Google Scholar

[11] 胡 , 马 , 黄 . 利用中国VLBI网实现对“火星快车”的测定轨. Chin Sci Bull, 2010, 55: 2659-2666 CrossRef Google Scholar

[12] Liu C K, Zhou J L, Wang B F. 嫦娥三号“玉兔号”巡视器遥操作中的关键技术. Sci Sin-Inf, 2014, 44: 425-440 CrossRef Google Scholar

[13] Li P J, Zheng X, Liu Q H. Analysis of VLBI observation for Tianma radio telescope in Chang'E-3 orbit determination. Sci Sin-Phys Mech Astron, 2015, 45: 039501 CrossRef ADS Google Scholar

[14] Li H T, Zhou H, Hao W H, et al. Development of radio interferometry and its prospect in deep space navigation (in Chinese). J Spacecr TT&C Technol, 2013, 32: 470--478. Google Scholar

[15] Cao J F, Huang Y, Hu X G, et al. Modeling and application of Doppler data in deep space exploration (in Chinese). J Astronautics, 2011, 32: 1583--1589. Google Scholar

[16] Cao J F, Huang Y, Liu L, et al. Modeling and algorithm realization of three-way Doppler for deep space exploration (in Chinese). J Astronautics, 2017, 38: 304--309. Google Scholar

[17] Huang Y, Hu X G, Cao J F, et al. The Mars satellite orbit determination software at Shanghai Astronomical Observatory (in Chinese). J Spacecr TT&C Technol, 2009, 28: 83--89. Google Scholar

[18] Konopliv A, Park S, Yuan D. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. Journal of Geophysical Research, 2013, 118(7):1415-1434. Google Scholar

[19] Folkner W, Williams J, Boggs D. The planetary and lunar ephemeris DE 421. Interplanetary Network Progress Report, 2009, 178: 1-34. Google Scholar

[20] Ulvestad J., Thurman S. Orbit-Determination Performance of Doppler Data for Interplanetary Cruise Trajectories Part I: Error Analysis Methodology. TDA Progress Report, 1992, 42-108: 31-48. Google Scholar

[21] Hamilton T, Melbourne W. Information Content of A Single Pass of Doppler Data from A Distant Spacecraft. Jet Propulsion Laboratory, 1966. Google Scholar

[22] Liu L, Hu S J, Cao J F, et al. Theory and Application of Spacecraft Orbit Determination. Beijing: Publishing House of Electronics Industry, 2015. Google Scholar

[23] Fan M. Researches of GNSS-based navigation for lunar missions. Dissertation for Ph.D. Degree. Shanghai: Shanghai Astronomical Observatory, 2018. Google Scholar

[24] Liu L S, Zhao H, Liu Y. On methods of accuracy validation for TT&C systems with a calibration satellite (in Chinese). J Spacecr TT&C Technol, 2014, 33: 275--282. Google Scholar

[25] Mao S S, Lv X L. Mathematical Statistics. Beijing: China Renmin University Press, 2011. Google Scholar

[26] Duan J F, Zhang Y, Chen M, et al. Application of GRAIL lunar gravity field model in attitude and orbit control for CE-3 satellite (in Chinese). J Spacecr TT&C Technol, 2014, 33: 342--347. Google Scholar

  • Figure 1

    Post-fit residuals of orbit determination using ranging, Doppler, and VLBI data. (a) Residuals of ranging data; (b) residuals of Doppler data

  • Figure 2

    Post-fit residuals of orbit determination using ranging + VLBI data and Doppler + VLBI data, respectively. (a) Residuals of ranging data; (b) residuals of Doppler data

  • Figure 3

    Post-fit residuals of orbit determination using ranging data and the Doppler data after the calibration of time-tag bias. (a) Residuals of ranging data; (b) residuals of Doppler data

  • Figure 4

    The difference (a) and time-tag bias (b) of the Doppler data obtained from deep space stations for CE-3 probe in lunar orbit

  • Figure 5

    QQ charts of time-tag bias calibrated by differential statistical method for Doppler data obtained from protectłinebreak (a) Jiamisi and (b) Kashi deep space stations

  • Figure 6

    Post-fit residuals of orbit determination by Doppler data after the calibration of time-tag bias

  • Table 1   Specific description of the measurement data
    Type of measurement Station/baseline Tracking arc
    2013-12-09 04:17$\sim$2013-12-09 05:17
    2013-12-09 06:00$\sim$2013-12-09 07:15
    Range/range rate Jiamusi 2013-12-09 07:59$\sim$2013-12-09 09:12
    2013-12-09 09:56$\sim$2013-12-09 11:10
    2013-12-09 11:54$\sim$2013-12-09 13:07
    Range/range rate Kashi 2013-12-09 13:52$\sim$2013-12-09 15:05
    2013-12-09 15:49$\sim$2013-12-09 17:02
    Time delay/time delay rate Beijing-Kunming 2013-12-09 07:02$\sim$2013-12-09 07:13
    Beijing-Shanghai
    Shanghai-Kunming 2013-12-09 07:59$\sim$2013-12-09 09:07
    Beijing-Urumqi2013-12-09 09:56$\sim$2013-12-09 11:04
    Kunming-Urumqi 2013-12-09 11:54$\sim$2013-12-09 13:02
    Shanghai-Urumqi 2013-12-09 13:52$\sim$2013-12-09 15:00
  • Table 2   Statistics of time-tag bias for Doppler data
    Station Mean $(\mu,\rm{ms})$ Standard deviation $(\sigma,\rm{ms})$ Skewness Kurtosis
    Jiamusi $-$24.76 0.72 0.14560 $-$0.03582
    Kashi $-$10.16 1.27 $-$0.28430 0.05471