References
[1]
Thomas M. Siebel. Digital Transformation Survive and Thrive in an Era of Mass Extinction. America: RosettaBooks, 2019. 23--50.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thomas M. Siebel. Digital Transformation Survive and Thrive in an Era of Mass Extinction. America: RosettaBooks, 2019. 23--50&
[2]
Tang
J,
Chen
W G.
Deep analytics and mining for big social data.
Chin Sci Bull,
2015, 60: 509-519
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep analytics and mining for big social data&author=Tang J&author=Chen W G&publication_year=2015&journal=Chin Sci Bull&volume=60&pages=509-519
[3]
Ding X, Li Z Y, Liu T, Liao K. ELG: an event logic graph. 2019,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ding X, Li Z Y, Liu T, Liao K. ELG: an event logic graph. 2019,&
[4]
Mnih
V,
Kavukcuoglu
K,
Silver
D.
Human-level control through deep reinforcement learning.
Nature,
2015, 518: 529-533
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Human-level control through deep reinforcement learning&author=Mnih V&author=Kavukcuoglu K&author=Silver D&publication_year=2015&journal=Nature&volume=518&pages=529-533
[5]
Wang
J P,
Shi
Y K,
Zhang
W S.
Multitask Policy Adversarial Learning for Human-Level Control With Large State Spaces.
IEEE Trans Ind Inf,
2019, 15: 2395-2404
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multitask Policy Adversarial Learning for Human-Level Control With Large State Spaces&author=Wang J P&author=Shi Y K&author=Zhang W S&publication_year=2019&journal=IEEE Trans Ind Inf&volume=15&pages=2395-2404
[6]
LIU Q, LI Y, YANG D H, et al. Knowledge graph construction techniques. Journal of Computer Research and Development, 2016, 53(3): 582-600 doi: 10.7544/issn1000-1239.2016.20148228.
Google Scholar
http://scholar.google.com/scholar_lookup?title=LIU Q, LI Y, YANG D H, et al. Knowledge graph construction techniques. Journal of Computer Research and Development, 2016, 53(3): 582-600 doi: 10.7544/issn1000-1239.2016.20148228&
[7]
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review. Journal of Computer Research and Development, 2016, 53(2): 1-16 doi: 10.7544/issn1000-1239.2016.20160020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review. Journal of Computer Research and Development, 2016, 53(2): 1-16 doi: 10.7544/issn1000-1239.2016.20160020&
[8]
Sharad Rawat, M.-H. Herman Shen. A Novel Topology Optimization Approach using Conditional Deep Learning,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sharad Rawat, M.-H. Herman Shen. A Novel Topology Optimization Approach using Conditional Deep Learning,&
[9]
Zhou
Z H,
Zhang
M L,
Huang
S J.
Multi-instance multi-label learning.
Artificial Intelligence,
2012, 176: 2291-2320
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-instance multi-label learning&author=Zhou Z H&author=Zhang M L&author=Huang S J&publication_year=2012&journal=Artificial Intelligence&volume=176&pages=2291-2320
[10]
Socher R, Milind G, Christopher D M, Andrew Y. Ng. Zero-Shot Learning Through Cross-Modal Transfer. In: Proceedings of Advances in Neural Information Processing Systems, San Francisco, 2013.1-10.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Socher R, Milind G, Christopher D M, Andrew Y. Ng. Zero-Shot Learning Through Cross-Modal Transfer. In: Proceedings of Advances in Neural Information Processing Systems, San Francisco, 2013.1-10&
[11]
Zeng D J, Liu K, Lai S W, Zhou G Y, Zhao J. Relation classification via convolutional deep neural network. In: Proceedings of the 25th International Conference on Computational Linguistics, 2014. 2335--2344.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zeng D J, Liu K, Lai S W, Zhou G Y, Zhao J. Relation classification via convolutional deep neural network. In: Proceedings of the 25th International Conference on Computational Linguistics, 2014. 2335--2344&
[12]
Zhang D X, Wang D. Relation classification via recurrent neural network. 2015,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang D X, Wang D. Relation classification via recurrent neural network. 2015,&
[13]
Miwa M, Bansa M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. In: Proceedings of the 53th Annual Meeting of the Association for Computational Linguistics, Beijing, 2016. 1105--1116.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miwa M, Bansa M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. In: Proceedings of the 53th Annual Meeting of the Association for Computational Linguistics, Beijing, 2016. 1105--1116&
[14]
Feng C, Kang L Q, Shi G, et al. Causality extraction with GAN. Acta Autom Sin, 2018, 44: 811--818.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feng C, Kang L Q, Shi G, et al. Causality extraction with GAN. Acta Autom Sin, 2018, 44: 811--818&
[15]
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2014. 701--710.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2014. 701--710&
[16]
Petar V, Guillem C, Arantxa C, et al. Graph attention networks. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Petar V, Guillem C, Arantxa C, et al. Graph attention networks. 2017,&
[17]
Wang D, Cui P, Zhu W. Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. 1225--1234.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang D, Cui P, Zhu W. Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. 1225--1234&
[18]
Chang S, Han W, Tang J, et al. Heterogeneous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015. 119--128.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chang S, Han W, Tang J, et al. Heterogeneous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015. 119--128&
[19]
Gui H, Liu J L, Tao F B, et al. Large-scale embedding learning in heterogeneous event data. In: Proceedings of IEEE 16th International Conference on Data Mining (ICDM), Beijing, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gui H, Liu J L, Tao F B, et al. Large-scale embedding learning in heterogeneous event data. In: Proceedings of IEEE 16th International Conference on Data Mining (ICDM), Beijing, 2016&
[20]
Xu L C, Wei X K, Cao J N, et al. Embedding of embedding: joint embedding for coupled heterogeneous networks. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, 2017. 741--749.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu L C, Wei X K, Cao J N, et al. Embedding of embedding: joint embedding for coupled heterogeneous networks. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, 2017. 741--749&
[21]
Mehrkanoon
S,
Suykens
J A K.
Regularized Semipaired Kernel CCA for Domain Adaptation.
IEEE Trans Neural Netw Learning Syst,
2017, : 1-15
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Regularized Semipaired Kernel CCA for Domain Adaptation&author=Mehrkanoon S&author=Suykens J A K&publication_year=2017&journal=IEEE Trans Neural Netw Learning Syst&pages=1-15
[22]
Mihalkova L, Huynh T N, Raymond J M. Mapping and revising Markov logic networks for transfer learning. In: Proceedings of the 22nd Conference on Artificial Intelligence, Canada, 2007. 608--614.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mihalkova L, Huynh T N, Raymond J M. Mapping and revising Markov logic networks for transfer learning. In: Proceedings of the 22nd Conference on Artificial Intelligence, Canada, 2007. 608--614&
[23]
Parisotto E, Ba J L, Salakhutdinov R. Actor-mimic: deep multitask and transfer reinforcement learning. In: Proceedings of the International Conference on Learning Representations, Puerto Rico, 2016. 156--171.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Parisotto E, Ba J L, Salakhutdinov R. Actor-mimic: deep multitask and transfer reinforcement learning. In: Proceedings of the International Conference on Learning Representations, Puerto Rico, 2016. 156--171&
[24]
Rusu A A, Colmenarejo S G, Gulcehre C, et al. Policy distillation. 2016,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rusu A A, Colmenarejo S G, Gulcehre C, et al. Policy distillation. 2016,&
[25]
Silver
D,
Huang
A,
Maddison
C J.
Mastering the game of Go with deep neural networks and tree search.
Nature,
2016, 529: 484-489
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mastering the game of Go with deep neural networks and tree search&author=Silver D&author=Huang A&author=Maddison C J&publication_year=2016&journal=Nature&volume=529&pages=484-489
[26]
Wang
J P,
Sun
Y C,
Zhang
W S.
Large-Scale Online Multitask Learning and Decision Making for Flexible Manufacturing.
IEEE Trans Ind Inf,
2016, 12: 2139-2147
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-Scale Online Multitask Learning and Decision Making for Flexible Manufacturing&author=Wang J P&author=Sun Y C&author=Zhang W S&publication_year=2016&journal=IEEE Trans Ind Inf&volume=12&pages=2139-2147
[27]
Xu K, Ba J, et al. Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd International Conference on Machine Learning, 2015. 2048--2057.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu K, Ba J, et al. Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd International Conference on Machine Learning, 2015. 2048--2057&
[28]
Karpathy
A,
Fei-Fei
L.
Deep Visual-Semantic Alignments for Generating Image Descriptions.
IEEE Trans Pattern Anal Mach Intell,
2017, 39: 664-676
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Visual-Semantic Alignments for Generating Image Descriptions&author=Karpathy A&author=Fei-Fei L&publication_year=2017&journal=IEEE Trans Pattern Anal Mach Intell&volume=39&pages=664-676
[29]
Zhou J B, Gou S H, Hu R J, et al. A collaborative learning framework to tag refinement for points of interest. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019. 1752--1761.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou J B, Gou S H, Hu R J, et al. A collaborative learning framework to tag refinement for points of interest. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019. 1752--1761&
[30]
David M B, John D L. Correlated topic models. In: Proceedings of the Advances in Neural Information Processing Systems, 2006, 18:147-154.
Google Scholar
http://scholar.google.com/scholar_lookup?title=David M B, John D L. Correlated topic models. In: Proceedings of the Advances in Neural Information Processing Systems, 2006, 18:147-154&
[31]
Ranganath R, Gerrish S, Blei D M. Black box variational inference. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, Reykjavik, 2014. 814--822.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ranganath R, Gerrish S, Blei D M. Black box variational inference. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, Reykjavik, 2014. 814--822&
[32]
Sun T, Sheldon D, Kumar A. Message passing for collective graphical models. In: Proceedings of the 32nd International Conference on Machine Learning, France, 2015. 853--861.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun T, Sheldon D, Kumar A. Message passing for collective graphical models. In: Proceedings of the 32nd International Conference on Machine Learning, France, 2015. 853--861&
[33]
Bernhard P. Disjunctive normal form. In: Encyclopedia of Machine Learning. Boston: Springer, 2017. 371--372.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bernhard P. Disjunctive normal form. In: Encyclopedia of Machine Learning. Boston: Springer, 2017. 371--372&
[34]
Wu Z H, Pan S R, Chen F W, et al. A comprehensive survey on graph neural networks. 2019,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu Z H, Pan S R, Chen F W, et al. A comprehensive survey on graph neural networks. 2019,&
[35]
Levie
R,
Monti
F,
Bresson
X.
CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters.
IEEE Trans Signal Process,
2019, 67: 97-109
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters&author=Levie R&author=Monti F&author=Bresson X&publication_year=2019&journal=IEEE Trans Signal Process&volume=67&pages=97-109
[36]
Silver
D,
Huang
A,
Maddison
C J.
Mastering the game of Go with deep neural networks and tree search.
Nature,
2016, 529: 484-489
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mastering the game of Go with deep neural networks and tree search&author=Silver D&author=Huang A&author=Maddison C J&publication_year=2016&journal=Nature&volume=529&pages=484-489
[37]
Meng Q, Yoshua B, Jian T, et al. GMNN: graph markov neural networks. In: Proceedings of the 36th International Conference on Machine Learning, 2019. 5241--5250.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Meng Q, Yoshua B, Jian T, et al. GMNN: graph markov neural networks. In: Proceedings of the 36th International Conference on Machine Learning, 2019. 5241--5250&
[38]
Michelle A L, Yuke Z, Peter Z, et al. Making sense of vision and touch: learning multimodal representations for contact-rich tasks. 2019,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Michelle A L, Yuke Z, Peter Z, et al. Making sense of vision and touch: learning multimodal representations for contact-rich tasks. 2019,&
[39]
Zhu S Y, Ng I, Chen Z T. Causal discovery with reinforcement learning. 2019,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu S Y, Ng I, Chen Z T. Causal discovery with reinforcement learning. 2019,&