SCIENTIA SINICA Informationis, Volume 51 , Issue 5 : 851(2021) https://doi.org/10.1360/SSI-2019-0255

CSI localization error bound estimation method under indoor Wi-Fi asynchronous effect

More info
  • ReceivedNov 18, 2019
  • AcceptedMar 6, 2020
  • PublishedApr 25, 2021


Funded by





[1] Jo K, Chu K, Sunwoo M. Interacting Multiple Model Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning. IEEE Trans Intell Transp Syst, 2012, 13: 329-343 CrossRef Google Scholar

[2] Schloemann J, Dhillon H S, Buehrer R M. Toward a Tractable Analysis of Localization Fundamentals in Cellular Networks. IEEE Trans Wireless Commun, 2016, 15: 1768-1782 CrossRef Google Scholar

[3] Yin F, Zhao Y, Gunnarsson F. Received-Signal-Strength Threshold Optimization Using Gaussian Processes. IEEE Trans Signal Process, 2017, 65: 2164-2177 CrossRef ADS Google Scholar

[4] Wei S, Zhang W, Deng C. BriGuard: a lightweight indoor intrusion detection system based on infrared light spot displacement. IET Sci Measurement Tech, 2015, 9: 306-314 CrossRef Google Scholar

[5] Hong K, Lee S K, Lee K. Performance improvement in ZigBee-based home networks with coexisting WLANs. Pervasive Mobile Computing, 2015, 19: 156-166 CrossRef Google Scholar

[6] Maalek R, Sadeghpour F. Accuracy assessment of ultra-wide band technology in locating dynamic resources in indoor scenarios. Automation Construction, 2016, 63: 12-26 CrossRef Google Scholar

[7] Liu M X, Sun J L. Design and implementation of WLAN indoor positioning system model based on energy efficiency. Chinese J Sci Instrum, 2014, 35: 1169--1178. Google Scholar

[8] Talvitie J, Renfors M, Lohan E S. Distance-Based Interpolation and Extrapolation Methods for RSS-Based Localization With Indoor Wireless Signals. IEEE Trans Veh Technol, 2015, 64: 1340-1353 CrossRef Google Scholar

[9] Song Q, Guo S, Liu X. CSI Amplitude Fingerprinting-Based NB-IoT Indoor Localization. IEEE Internet Things J, 2018, 5: 1494-1504 CrossRef Google Scholar

[10] Zheng D C, Xiang H G. An algorithm to estimate frequency deviation. Acta Electron Sin, 1999, 1: 79--81. Google Scholar

[11] Wu T, Dai X C. Blind estimation of frequency offset and symbol timing error. J Data A Cquisiton Process, 2005, 20: 291--296. Google Scholar

[12] Cui X Z, Hu G R, Chen H. Effects of sampling frequency offset on orthogonal frequency division multiplexing systems and estimating method. J Shanghai Jiaotong Univ, 2003, 37: 1581--1584. Google Scholar

[13] Xie B, Qiu W, Minn H. Exact Signal Model and New Carrier Frequency Offset Compensation Scheme for OFDM. IEEE Trans Wireless Commun, 2012, 11: 550-555 CrossRef Google Scholar

[14] Yuan J, Torlak M. Joint CFO and SFO Estimator for OFDM Receiver Using Common Reference Frequency. IEEE Trans Broadcast, 2016, 62: 141-149 CrossRef Google Scholar

[15] Dah-Chung Chang . Effect and Compensation of Symbol Timing Offset in OFDM Systems With Channel Interpolation. IEEE Trans Broadcast, 2008, 54: 761-770 CrossRef Google Scholar

[16] Gui L, Yang M, Yu H. A Cramer-Rao Lower Bound of CSI-Based Indoor Localization. IEEE Trans Veh Technol, 2018, 67: 2814-2818 CrossRef Google Scholar

[17] Tian X, Zhu S, Xiong S. Performance Analysis of Wi-Fi Indoor Localization with Channel State Information. IEEE Trans Mobile Comput, 2019, 18: 1870-1884 CrossRef Google Scholar

[18] Qi Y, Kobayashi H, Suda H. On Time-of-arrival Positioning in a Multipath Environment. IEEE Trans Veh Technol, 2006, 55: 1516-1526 CrossRef Google Scholar

[19] Zhou M, Qiu F, Xu K. Error bound analysis of indoor Wi-Fi location fingerprint based positioning for intelligent Access Point optimization via Fisher information. Comput Commun, 2016, 86: 57-74 CrossRef Google Scholar

[20] Besson O, Abramovich Y I. On the Fisher Information Matrix for Multivariate Elliptically Contoured Distributions. IEEE Signal Process Lett, 2013, 20: 1130-1133 CrossRef ADS arXiv Google Scholar

[21] Sengupta S K, Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory. Technometrics, 1995, 37: 465 CrossRef Google Scholar

[22] Pollet T, Van Bladel M, Moeneclaey M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Trans Commun, 1995, 43: 191-193 CrossRef Google Scholar

[23] Shen Y, Win M Z. Fundamental Limits of Wideband Localization- Part I: A General Framework. IEEE Trans Inform Theor, 2010, 56: 4956-4980 CrossRef Google Scholar

[24] Baoguo Yang , Letaief K B, Cheng R S. Timing recovery for OFDM transmission. IEEE J Sel Areas Commun, 2000, 18: 2278-2291 CrossRef Google Scholar

[25] Sklar B. Digital communications: fundamentals and applications. Hypertens Res Off J Jpn Soc Hypertens, 2012, 33: 177--180. Google Scholar

[26] Kotaru M, Joshi K, Bharadia D. SpotFi. SIGCOMM Comput Commun Rev, 2015, 45: 269-282 CrossRef Google Scholar

[27] Vasisht D, Kumar S, Katabi D. Decimeter-level localization with a single wifi access point. In: Proceedings of Networked Systems Design and Implementation, California, 2016. 165--178. Google Scholar

[28] Kumar S, Gil S, Katabi D, et al. Accurate indoor localization with zero start-up cost. In: Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking, Hawaii, 2014. 483--494. Google Scholar

[29] Xiong J, Jamieson K. Arraytrack: A fine-grained indoor location system. In: Proceedings of Networked Systems Design and Implementation, Boston, 2013. 73--84. Google Scholar


Contact and support