References
[1]
von NEUMANN
J.
The Principles of Large-Scale Computing Machines.
IEEE Ann Hist Comput,
1988, 10: 243-256
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Principles of Large-Scale Computing Machines&author=von NEUMANN J&publication_year=1988&journal=IEEE Ann Hist Comput&volume=10&pages=243-256
[2]
Waldrop
M M.
The chips are down for Moore's law..
Nature,
2016, 530: 144-147
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The chips are down for Moore's law.&author=Waldrop M M&publication_year=2016&journal=Nature&volume=530&pages=144-147
[3]
Merolla
P A,
Arthur
J V,
Alvarez-Icaza
R.
A million spiking-neuron integrated circuit with a scalable communication network and interface.
Science,
2014, 345: 668-673
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A million spiking-neuron integrated circuit with a scalable communication network and interface&author=Merolla P A&author=Arthur J V&author=Alvarez-Icaza R&publication_year=2014&journal=Science&volume=345&pages=668-673
[4]
Zidan
M A,
Strachan
J P,
Lu
W D.
The future of electronics based on memristive systems.
Nat Electron,
2018, 1: 22-29
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The future of electronics based on memristive systems&author=Zidan M A&author=Strachan J P&author=Lu W D&publication_year=2018&journal=Nat Electron&volume=1&pages=22-29
[5]
Upadhyay
N K,
Joshi
S,
Yang
J J.
Synaptic electronics and neuromorphic computing.
Sci China Inf Sci,
2016, 59: 061404
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic electronics and neuromorphic computing&author=Upadhyay N K&author=Joshi S&author=Yang J J&publication_year=2016&journal=Sci China Inf Sci&volume=59&pages=061404
[6]
Attwell
D,
Laughlin
S B.
An energy budget for signaling in the grey matter of the brain..
J Cereb Blood Flow Metab,
2001, 21: 1133-1145
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=An energy budget for signaling in the grey matter of the brain.&author=Attwell D&author=Laughlin S B&publication_year=2001&journal=J Cereb Blood Flow Metab&volume=21&pages=1133-1145
[7]
Drachman D A. Do we have brain to spare. Neurology, 2005, 64: 2004-2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Drachman D A. Do we have brain to spare. Neurology, 2005, 64: 2004-2005&
[8]
Indiveri
G,
Liu
S C.
Memory and Information Processing in Neuromorphic Systems.
Proc IEEE,
2015, 103: 1379-1397
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Memory and Information Processing in Neuromorphic Systems&author=Indiveri G&author=Liu S C&publication_year=2015&journal=Proc IEEE&volume=103&pages=1379-1397
[9]
Markram
H.
The blue brain project..
Nat Rev Neurosci,
2006, 7: 153-160
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=The blue brain project.&author=Markram H&publication_year=2006&journal=Nat Rev Neurosci&volume=7&pages=153-160
[10]
Machens
C K.
Building the Human Brain.
Science,
2012, 338: 1156-1157
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Building the Human Brain&author=Machens C K&publication_year=2012&journal=Science&volume=338&pages=1156-1157
[11]
Prezioso
M,
Merrikh-Bayat
F,
Hoskins
B D.
Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Nature,
2015, 521: 61-64
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Training and operation of an integrated neuromorphic network based on metal-oxide memristors&author=Prezioso M&author=Merrikh-Bayat F&author=Hoskins B D&publication_year=2015&journal=Nature&volume=521&pages=61-64
[12]
Kuzum D, Yu S, Wong H-S P. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24: 382001.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kuzum D, Yu S, Wong H-S P. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24: 382001&
[13]
Esser
S K,
Merolla
P A,
Arthur
J V.
Convolutional networks for fast, energy-efficient neuromorphic computing..
Proc Natl Acad Sci USA,
2016, 113: 11441-11446
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convolutional networks for fast, energy-efficient neuromorphic computing.&author=Esser S K&author=Merolla P A&author=Arthur J V&publication_year=2016&journal=Proc Natl Acad Sci USA&volume=113&pages=11441-11446
[14]
Cheng
Z,
Ríos
C,
Pernice
W H P.
On-chip photonic synapse.
Sci Adv,
2017, 3: e1700160
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip photonic synapse&author=Cheng Z&author=Ríos C&author=Pernice W H P&publication_year=2017&journal=Sci Adv&volume=3&pages=e1700160
[15]
Ananthanarayanan R, Esser S K, Simon H D, et al. The cat is out of the bag: cortical simulations with 10$^9$ neurons, 10$^{13}$ synapses. In: Proceedings of the IEEE Conference on High Performance Computing Networking, Storage and Analysis, Portland, 2009. 1-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ananthanarayanan R, Esser S K, Simon H D, et al. The cat is out of the bag: cortical simulations with 10$^9$ neurons, 10$^{13}$ synapses. In: Proceedings of the IEEE Conference on High Performance Computing Networking, Storage and Analysis, Portland, 2009. 1-12&
[16]
Yang
R,
Terabe
K,
Yao
Y.
Synaptic plasticity and memory functions achieved in a WO$_{3-x}$-based nanoionics device by using the principle of atomic switch operation.
Nanotechnology,
2013, 24: 384003
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic plasticity and memory functions achieved in a WO$_{3-x}$-based nanoionics device by using the principle of atomic switch operation&author=Yang R&author=Terabe K&author=Yao Y&publication_year=2013&journal=Nanotechnology&volume=24&pages=384003
[17]
Kim
K,
Chen
C L,
Truong
Q.
A carbon nanotube synapse with dynamic logic and learning..
Adv Mater,
2013, 25: 1693-1698
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A carbon nanotube synapse with dynamic logic and learning.&author=Kim K&author=Chen C L&author=Truong Q&publication_year=2013&journal=Adv Mater&volume=25&pages=1693-1698
[18]
Shi
J,
Ha
S D,
Zhou
Y.
A correlated nickelate synaptic transistor.
Nat Commun,
2013, 4: 2676
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A correlated nickelate synaptic transistor&author=Shi J&author=Ha S D&author=Zhou Y&publication_year=2013&journal=Nat Commun&volume=4&pages=2676
[19]
Zhu
L Q,
Wan
C J,
Guo
L Q.
Artificial synapse network on inorganic proton conductor for neuromorphic systems.
Nat Commun,
2014, 5: 3158-3165
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial synapse network on inorganic proton conductor for neuromorphic systems&author=Zhu L Q&author=Wan C J&author=Guo L Q&publication_year=2014&journal=Nat Commun&volume=5&pages=3158-3165
[20]
van de Burgt
Y,
Lubberman
E,
Fuller
E J.
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing.
Nat Mater,
2017, 16: 414-418
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing&author=van de Burgt Y&author=Lubberman E&author=Fuller E J&publication_year=2017&journal=Nat Mater&volume=16&pages=414-418
[21]
Jo
S H,
Chang
T,
Ebong
I.
Nanoscale Memristor Device as Synapse in Neuromorphic Systems.
Nano Lett,
2010, 10: 1297-1301
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanoscale Memristor Device as Synapse in Neuromorphic Systems&author=Jo S H&author=Chang T&author=Ebong I&publication_year=2010&journal=Nano Lett&volume=10&pages=1297-1301
[22]
Chang
T,
Jo
S H,
Lu
W.
Short-term memory to long-term memory transition in a nanoscale memristor..
ACS Nano,
2011, 5: 7669-7676
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short-term memory to long-term memory transition in a nanoscale memristor.&author=Chang T&author=Jo S H&author=Lu W&publication_year=2011&journal=ACS Nano&volume=5&pages=7669-7676
[23]
Pickett
M D,
Medeiros-Ribeiro
G,
Williams
R S.
A scalable neuristor built with Mott memristors.
Nat Mater,
2013, 12: 114-117
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A scalable neuristor built with Mott memristors&author=Pickett M D&author=Medeiros-Ribeiro G&author=Williams R S&publication_year=2013&journal=Nat Mater&volume=12&pages=114-117
[24]
Yang
R,
Terabe
K,
Liu
G.
On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration..
ACS Nano,
2012, 6: 9515-9521
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration.&author=Yang R&author=Terabe K&author=Liu G&publication_year=2012&journal=ACS Nano&volume=6&pages=9515-9521
[25]
Ohno
T,
Hasegawa
T,
Tsuruoka
T.
Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.
Nat Mater,
2011, 10: 591-595
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short-term plasticity and long-term potentiation mimicked in single inorganic synapses&author=Ohno T&author=Hasegawa T&author=Tsuruoka T&publication_year=2011&journal=Nat Mater&volume=10&pages=591-595
[26]
Pan F, Gao S, Chen C, et al. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng R, 2014, 83: 1-59.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pan F, Gao S, Chen C, et al. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng R, 2014, 83: 1-59&
[27]
Wang
Z,
Joshi
S,
Savel'ev
S E.
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing.
Nat Mater,
2017, 16: 101-108
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing&author=Wang Z&author=Joshi S&author=Savel'ev S E&publication_year=2017&journal=Nat Mater&volume=16&pages=101-108
[28]
Benner
A F,
Ignatowski
M,
Kash
J A.
Exploitation of optical interconnects in future server architectures.
IBM J Res Dev,
2005, 49: 755-775
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exploitation of optical interconnects in future server architectures&author=Benner A F&author=Ignatowski M&author=Kash J A&publication_year=2005&journal=IBM J Res Dev&volume=49&pages=755-775
[29]
Zhuge X, Wang J, Zhuge F. Photonic synapses for ultrahigh-speed neuromorphic computing. Phys Status Solidi RRL, 2019, 13: 1900082.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhuge X, Wang J, Zhuge F. Photonic synapses for ultrahigh-speed neuromorphic computing. Phys Status Solidi RRL, 2019, 13: 1900082&
[30]
Zhu
X,
Lu
W D.
Optogenetics-Inspired Tunable Synaptic Functions in Memristors.
ACS Nano,
2018, 12: 1242-1249
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optogenetics-Inspired Tunable Synaptic Functions in Memristors&author=Zhu X&author=Lu W D&publication_year=2018&journal=ACS Nano&volume=12&pages=1242-1249
[31]
Ham
S,
Choi
S,
Cho
H.
Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine-Facilitated Synaptic Activity.
Adv Funct Mater,
2019, 29: 1806646
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine-Facilitated Synaptic Activity&author=Ham S&author=Choi S&author=Cho H&publication_year=2019&journal=Adv Funct Mater&volume=29&pages=1806646
[32]
Zhao S, Ni Z, Tan H, et al. Electroluminescent synaptic devices with logic functions. Nano Energy, 2018, 383-389.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao S, Ni Z, Tan H, et al. Electroluminescent synaptic devices with logic functions. Nano Energy, 2018, 383-389&
[33]
Zhao
S,
Wang
Y,
Huang
W.
Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity.
Sci China Mater,
2019, 62: 1470-1478
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity&author=Zhao S&author=Wang Y&author=Huang W&publication_year=2019&journal=Sci China Mater&volume=62&pages=1470-1478
[34]
Gkoupidenis
P,
Koutsouras
D A,
Malliaras
G G.
Neuromorphic device architectures with global connectivity through electrolyte gating.
Nat Commun,
2017, 8: 15448
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neuromorphic device architectures with global connectivity through electrolyte gating&author=Gkoupidenis P&author=Koutsouras D A&author=Malliaras G G&publication_year=2017&journal=Nat Commun&volume=8&pages=15448
[35]
Deisseroth K. Optogenetics. Nat Methods, 2011, 8: 26-29.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deisseroth K. Optogenetics. Nat Methods, 2011, 8: 26-29&
[36]
Treichler D G. Are you missing the boat in training aids. Film Audio-Visual Commun, 1967, 1: 14-16.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Treichler D G. Are you missing the boat in training aids. Film Audio-Visual Commun, 1967, 1: 14-16&
[37]
Wang
G,
Wang
R,
Kong
W.
Simulation of retinal ganglion cell response using fast independent component analysis..
Cogn Neurodyn,
2018, 12: 615-624
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simulation of retinal ganglion cell response using fast independent component analysis.&author=Wang G&author=Wang R&author=Kong W&publication_year=2018&journal=Cogn Neurodyn&volume=12&pages=615-624
[38]
Xiao
Z,
Huang
J.
Energy-Efficient Hybrid Perovskite Memristors and Synaptic Devices.
Adv Electron Mater,
2016, 2: 1600100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Energy-Efficient Hybrid Perovskite Memristors and Synaptic Devices&author=Xiao Z&author=Huang J&publication_year=2016&journal=Adv Electron Mater&volume=2&pages=1600100
[39]
Bi
G,
Poo
M.
Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type.
J Neurosci,
1998, 18: 10464-10472
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type&author=Bi G&author=Poo M&publication_year=1998&journal=J Neurosci&volume=18&pages=10464-10472
[40]
Kandel
E R.
Neuroscience: breaking down scientific barriers to the study of brain and mind..
Science,
2000, 290: 1113-1120
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neuroscience: breaking down scientific barriers to the study of brain and mind.&author=Kandel E R&publication_year=2000&journal=Science&volume=290&pages=1113-1120
[41]
Chih
B.
Control of Excitatory and Inhibitory Synapse Formation by Neuroligins.
Science,
2005, 307: 1324-1328
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Control of Excitatory and Inhibitory Synapse Formation by Neuroligins&author=Chih B&publication_year=2005&journal=Science&volume=307&pages=1324-1328
[42]
Sturman
B,
Podivilov
E,
Gorkunov
M.
Origin of Stretched Exponential Relaxation for Hopping-Transport Models.
Phys Rev Lett,
2003, 91: 176602
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Origin of Stretched Exponential Relaxation for Hopping-Transport Models&author=Sturman B&author=Podivilov E&author=Gorkunov M&publication_year=2003&journal=Phys Rev Lett&volume=91&pages=176602
[43]
Yang
Y,
Lisberger
S G.
Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration.
Nature,
2014, 510: 529-532
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration&author=Yang Y&author=Lisberger S G&publication_year=2014&journal=Nature&volume=510&pages=529-532
[44]
Qin
S,
Wang
F,
Liu
Y.
A light-stimulated synaptic device based on graphene hybrid phototransistor.
2D Mater,
2017, 4: 035022
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=A light-stimulated synaptic device based on graphene hybrid phototransistor&author=Qin S&author=Wang F&author=Liu Y&publication_year=2017&journal=2D Mater&volume=4&pages=035022
[45]
Yu
J J,
Liang
L Y,
Hu
L X.
Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation.
Nano Energy,
2019, 62: 772-780
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation&author=Yu J J&author=Liang L Y&author=Hu L X&publication_year=2019&journal=Nano Energy&volume=62&pages=772-780
[46]
Kumar
M,
Abbas
S,
Kim
J.
All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing.
ACS Appl Mater Interfaces,
2018, 10: 34370-34376
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing&author=Kumar M&author=Abbas S&author=Kim J&publication_year=2018&journal=ACS Appl Mater Interfaces&volume=10&pages=34370-34376
[47]
Zhou
F,
Zhou
Z,
Chen
J.
Optoelectronic resistive random access memory for neuromorphic vision sensors..
Nat Nanotechnol,
2019, 14: 776-782
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optoelectronic resistive random access memory for neuromorphic vision sensors.&author=Zhou F&author=Zhou Z&author=Chen J&publication_year=2019&journal=Nat Nanotechnol&volume=14&pages=776-782
[48]
Ni Z, Wang Y, Liu L, et al. Hybrid structure of silicon nanocrystals and 2D WSe$_2$ for broadband optoelectronic synaptic devices. In: Proceedings of the 64th Annual IEEE International Electron Devices Meeting (IEDM), San Francisco, 2018. 887-890.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ni Z, Wang Y, Liu L, et al. Hybrid structure of silicon nanocrystals and 2D WSe$_2$ for broadband optoelectronic synaptic devices. In: Proceedings of the 64th Annual IEEE International Electron Devices Meeting (IEDM), San Francisco, 2018. 887-890&
[49]
Mueller
T,
Xia
F,
Avouris
P.
Graphene photodetectors for high-speed optical communications.
Nat Photon,
2010, 4: 297-301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene photodetectors for high-speed optical communications&author=Mueller T&author=Xia F&author=Avouris P&publication_year=2010&journal=Nat Photon&volume=4&pages=297-301
[50]
Destexhe
A,
Marder
E.
Plasticity in single neuron and circuit computations.
Nature,
2004, 431: 789-795
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasticity in single neuron and circuit computations&author=Destexhe A&author=Marder E&publication_year=2004&journal=Nature&volume=431&pages=789-795
[51]
Zucker
R S,
Regehr
W G.
Short-Term Synaptic Plasticity.
Annu Rev Physiol,
2002, 64: 355-405
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short-Term Synaptic Plasticity&author=Zucker R S&author=Regehr W G&publication_year=2002&journal=Annu Rev Physiol&volume=64&pages=355-405
[52]
Abbott L F, Regehr W G. Synaptic computation. Nature, 2004, 431: 796-803.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Abbott L F, Regehr W G. Synaptic computation. Nature, 2004, 431: 796-803&
[53]
Hebb D O. Organization of behavior. J Physiol, 1949, 911: 335.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hebb D O. Organization of behavior. J Physiol, 1949, 911: 335&
[54]
Bliss
T V P,
Collingridge
G L.
A synaptic model of memory: long-term potentiation in the hippocampus.
Nature,
1993, 361: 31-39
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A synaptic model of memory: long-term potentiation in the hippocampus&author=Bliss T V P&author=Collingridge G L&publication_year=1993&journal=Nature&volume=361&pages=31-39
[55]
Kandel
E R.
The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses.
Science,
2001, 294: 1030-1038
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses&author=Kandel E R&publication_year=2001&journal=Science&volume=294&pages=1030-1038
[56]
Lamprecht
R,
LeDoux
J.
Structural plasticity and memory..
Nat Rev Neurosci,
2004, 5: 45-54
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Structural plasticity and memory.&author=Lamprecht R&author=LeDoux J&publication_year=2004&journal=Nat Rev Neurosci&volume=5&pages=45-54
[57]
Wan
C J,
Zhu
L Q,
Zhou
J M.
Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.
Nanoscale,
2014, 6: 4491-4497
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics&author=Wan C J&author=Zhu L Q&author=Zhou J M&publication_year=2014&journal=Nanoscale&volume=6&pages=4491-4497
[58]
Debanne
D,
Guérineau
N C,
G?hwiler
B H.
Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release..
J Physiol,
1996, 491: 163-176
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release.&author=Debanne D&author=Guérineau N C&author=G?hwiler B H&publication_year=1996&journal=J Physiol&volume=491&pages=163-176
[59]
Hu
S G,
Liu
Y,
Chen
T P.
Emulating the paired-pulse facilitation of a biological synapse with a NiO$_{x}$-based memristor.
Appl Phys Lett,
2013, 102: 183510
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Emulating the paired-pulse facilitation of a biological synapse with a NiO$_{x}$-based memristor&author=Hu S G&author=Liu Y&author=Chen T P&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=183510
[60]
Liu
Y H,
Zhu
L Q,
Feng
P.
Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes..
Adv Mater,
2015, 27: 5599-5604
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes.&author=Liu Y H&author=Zhu L Q&author=Feng P&publication_year=2015&journal=Adv Mater&volume=27&pages=5599-5604
[61]
Liu
G,
Wang
C,
Zhang
W.
Organic Biomimicking Memristor for Information Storage and Processing Applications.
Adv Electron Mater,
2016, 2: 1500298
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Organic Biomimicking Memristor for Information Storage and Processing Applications&author=Liu G&author=Wang C&author=Zhang W&publication_year=2016&journal=Adv Electron Mater&volume=2&pages=1500298
[62]
Atluri
P P,
Regehr
W G.
Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse.
J Neurosci,
1996, 16: 5661-5671
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse&author=Atluri P P&author=Regehr W G&publication_year=1996&journal=J Neurosci&volume=16&pages=5661-5671
[63]
Qin S, Liu Y, Wang X, et al. Light-activated artificial synapse based on graphene hybrid phototransistors. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), San Jose, 2016. SW1R.4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qin S, Liu Y, Wang X, et al. Light-activated artificial synapse based on graphene hybrid phototransistors. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), San Jose, 2016. SW1R.4&
[64]
Li
B,
Wei
W,
Yan
X.
Mimicking synaptic functionality with an InAs nanowire phototransistor.
Nanotechnology,
2018, 29: 464004
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mimicking synaptic functionality with an InAs nanowire phototransistor&author=Li B&author=Wei W&author=Yan X&publication_year=2018&journal=Nanotechnology&volume=29&pages=464004
[65]
Yang
Y,
He
Y,
Nie
S.
Light Stimulated IGZO-Based Electric-Double-Layer Transistors For Photoelectric Neuromorphic Devices.
IEEE Electron Device Lett,
2018, 39: 897-900
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Light Stimulated IGZO-Based Electric-Double-Layer Transistors For Photoelectric Neuromorphic Devices&author=Yang Y&author=He Y&author=Nie S&publication_year=2018&journal=IEEE Electron Device Lett&volume=39&pages=897-900
[66]
Wang
Y,
Lv
Z,
Chen
J.
Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing..
Adv Mater,
2018, 30: 1802883
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing.&author=Wang Y&author=Lv Z&author=Chen J&publication_year=2018&journal=Adv Mater&volume=30&pages=1802883
[67]
Atkinson R C, Shiffrin R M. Human memory: a proposed system and its control processes. The Psychology of Learning and Motivation: Advances in Research and Theory, 1968, 2: 89-195.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atkinson R C, Shiffrin R M. Human memory: a proposed system and its control processes. The Psychology of Learning and Motivation: Advances in Research and Theory, 1968, 2: 89-195&
[68]
McGaugh
J L.
Memory-a Century of Consolidation.
Science,
2000, 287: 248-251
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Memory-a Century of Consolidation&author=McGaugh J L&publication_year=2000&journal=Science&volume=287&pages=248-251
[69]
Izquierdo
I,
McGaugh
J L.
Behavioural pharmacology and its contribution to the molecular basis of memory consolidation..
Behaval Pharmacol,
2000, 11: 517-534
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Behavioural pharmacology and its contribution to the molecular basis of memory consolidation.&author=Izquierdo I&author=McGaugh J L&publication_year=2000&journal=Behaval Pharmacol&volume=11&pages=517-534
[70]
Lee
M,
Lee
W,
Choi
S.
Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity..
Adv Mater,
2017, 29: 1700951
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity.&author=Lee M&author=Lee W&author=Choi S&publication_year=2017&journal=Adv Mater&volume=29&pages=1700951
[71]
Dan
Y,
Poo
M M.
Spike timing-dependent plasticity: from synapse to perception..
Physiol Rev,
2006, 86: 1033-1048
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spike timing-dependent plasticity: from synapse to perception.&author=Dan Y&author=Poo M M&publication_year=2006&journal=Physiol Rev&volume=86&pages=1033-1048
[72]
Mandal
S,
Long
B,
Jha
R.
Study of Synaptic Behavior in Doped Transition Metal Oxide-Based Reconfigurable Devices.
IEEE Trans Electron Devices,
2013, 60: 4219-4225
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study of Synaptic Behavior in Doped Transition Metal Oxide-Based Reconfigurable Devices&author=Mandal S&author=Long B&author=Jha R&publication_year=2013&journal=IEEE Trans Electron Devices&volume=60&pages=4219-4225
[73]
He
H K,
Yang
R,
Zhou
W.
Small,
2018, 14: 1800079
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?author=He H K&author=Yang R&author=Zhou W&publication_year=2018&journal=Small&volume=14&pages=1800079
[74]
Yang
C S,
Shang
D S,
Chai
Y S.
Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells.
Phys Chem Chem Phys,
2017, 19: 4190-4198
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells&author=Yang C S&author=Shang D S&author=Chai Y S&publication_year=2017&journal=Phys Chem Chem Phys&volume=19&pages=4190-4198
[75]
Pilarczyk
K,
Podborska
A,
Lis
M.
Synaptic Behavior in an Optoelectronic Device Based on Semiconductor-Nanotube Hybrid.
Adv Electron Mater,
2016, 2: 1500471
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic Behavior in an Optoelectronic Device Based on Semiconductor-Nanotube Hybrid&author=Pilarczyk K&author=Podborska A&author=Lis M&publication_year=2016&journal=Adv Electron Mater&volume=2&pages=1500471
[76]
Wang K, Dai S, Zhao Y, et al. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small, 2019, 15: e1900010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang K, Dai S, Zhao Y, et al. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small, 2019, 15: e1900010&
[77]
Wang
Z Q,
Xu
H Y,
Li
X H.
Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor.
Adv Funct Mater,
2012, 22: 2759-2765
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor&author=Wang Z Q&author=Xu H Y&author=Li X H&publication_year=2012&journal=Adv Funct Mater&volume=22&pages=2759-2765
[78]
Li
S,
Zeng
F,
Chen
C.
Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system.
J Mater Chem C,
2013, 1: 5292-5298
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system&author=Li S&author=Zeng F&author=Chen C&publication_year=2013&journal=J Mater Chem C&volume=1&pages=5292-5298
[79]
Wang
L G,
Zhang
W,
Chen
Y.
Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfO$_{x}$/ZnO$_{x}$/TiN Memristive System.
Nanoscale Res Lett,
2017, 12: 65
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfO$_{x}$/ZnO$_{x}$/TiN Memristive System&author=Wang L G&author=Zhang W&author=Chen Y&publication_year=2017&journal=Nanoscale Res Lett&volume=12&pages=65
[80]
Froemke
R C,
Dan
Y.
Spike-timing-dependent synaptic modification induced by natural spike trains.
Nature,
2002, 416: 433-438
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spike-timing-dependent synaptic modification induced by natural spike trains&author=Froemke R C&author=Dan Y&publication_year=2002&journal=Nature&volume=416&pages=433-438
[81]
Kim
H,
Hwang
S,
Park
J.
Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.
Nanotechnology,
2017, 28: 405202
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system&author=Kim H&author=Hwang S&author=Park J&publication_year=2017&journal=Nanotechnology&volume=28&pages=405202
[82]
Covi E, Brivio S, Serb A, et al. Analog memristive synapse in spiking networks implementing unsupervised learning. Front Neurosci, 2016, 10: 482.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Covi E, Brivio S, Serb A, et al. Analog memristive synapse in spiking networks implementing unsupervised learning. Front Neurosci, 2016, 10: 482&
[83]
D'amour
J A,
Froemke
R C.
Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex..
Neuron,
2015, 86: 514-528
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex.&author=D'amour J A&author=Froemke R C&publication_year=2015&journal=Neuron&volume=86&pages=514-528
[84]
Chen
Y,
Wei
Q,
Yin
J.
Silicon-Based Hybrid Optoelectronic Devices with Synaptic Plasticity and Stateful Photoresponse.
Adv Electron Mater,
2018, 4: 1800242
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-Based Hybrid Optoelectronic Devices with Synaptic Plasticity and Stateful Photoresponse&author=Chen Y&author=Wei Q&author=Yin J&publication_year=2018&journal=Adv Electron Mater&volume=4&pages=1800242
[85]
Alibart
F,
Pleutin
S,
Bichler
O.
A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing.
Adv Funct Mater,
2012, 22: 609-616
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing&author=Alibart F&author=Pleutin S&author=Bichler O&publication_year=2012&journal=Adv Funct Mater&volume=22&pages=609-616
[86]
Lengyel
M,
Kwag
J,
Paulsen
O.
Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves..
Nat Neurosci,
2005, 8: 1677-1683
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves.&author=Lengyel M&author=Kwag J&author=Paulsen O&publication_year=2005&journal=Nat Neurosci&volume=8&pages=1677-1683
[87]
Dudman
J T,
Tsay
D,
Siegelbaum
S A.
A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity..
Neuron,
2007, 56: 866-879
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity.&author=Dudman J T&author=Tsay D&author=Siegelbaum S A&publication_year=2007&journal=Neuron&volume=56&pages=866-879
[88]
Guyonneau
R,
VanRullen
R,
Thorpe
S J.
Neurons tune to the earliest spikes through STDP..
Neural Computation,
2005, 17: 859-879
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neurons tune to the earliest spikes through STDP.&author=Guyonneau R&author=VanRullen R&author=Thorpe S J&publication_year=2005&journal=Neural Computation&volume=17&pages=859-879
[89]
Shouval H Z, Wang S S, Wittenberg G M. Spike timing dependent plasticity: a consequence of more fundamental learning rules. Front Comput Neurosci, 2010, 4: 19.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shouval H Z, Wang S S, Wittenberg G M. Spike timing dependent plasticity: a consequence of more fundamental learning rules. Front Comput Neurosci, 2010, 4: 19&
[90]
Abbott
L F,
Nelson
S B.
Synaptic plasticity: taming the beast..
Nat Neurosci,
2000, 3: 1178-1183
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic plasticity: taming the beast.&author=Abbott L F&author=Nelson S B&publication_year=2000&journal=Nat Neurosci&volume=3&pages=1178-1183
[91]
Li Y, Zhong Y, Zhang J, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci Rep, 2014, 4: 4906.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li Y, Zhong Y, Zhang J, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci Rep, 2014, 4: 4906&
[92]
Li
Y,
Zhong
Y,
Xu
L.
Ultrafast Synaptic Events in a Chalcogenide Memristor.
Sci Rep,
2013, 3: 1619
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrafast Synaptic Events in a Chalcogenide Memristor&author=Li Y&author=Zhong Y&author=Xu L&publication_year=2013&journal=Sci Rep&volume=3&pages=1619
[93]
Wang
J,
Chen
Y,
Kong
L A.
Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors.
Appl Phys Lett,
2018, 113: 151101
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors&author=Wang J&author=Chen Y&author=Kong L A&publication_year=2018&journal=Appl Phys Lett&volume=113&pages=151101
[94]
Martin
S J,
Grimwood
P D,
Morris
R G M.
Synaptic Plasticity and Memory: An Evaluation of the Hypothesis.
Annu Rev Neurosci,
2000, 23: 649-711
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic Plasticity and Memory: An Evaluation of the Hypothesis&author=Martin S J&author=Grimwood P D&author=Morris R G M&publication_year=2000&journal=Annu Rev Neurosci&volume=23&pages=649-711
[95]
Rachmuth
G,
Shouval
H Z,
Bear
M F.
PNAS Plus: A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity.
Proc Natl Acad Sci USA,
2011, 108: E1266-E1274
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=PNAS Plus: A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity&author=Rachmuth G&author=Shouval H Z&author=Bear M F&publication_year=2011&journal=Proc Natl Acad Sci USA&volume=108&pages=E1266-E1274
[96]
Kirkwood
A,
Rioult
M G,
Bear
M F.
Experience-dependent modification of synaptic plasticity in visual cortex.
Nature,
1996, 381: 526-528
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experience-dependent modification of synaptic plasticity in visual cortex&author=Kirkwood A&author=Rioult M G&author=Bear M F&publication_year=1996&journal=Nature&volume=381&pages=526-528
[97]
Jiang
J,
Hu
W,
Xie
D.
2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration..
Nanoscale,
2019, 11: 1360-1369
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration.&author=Jiang J&author=Hu W&author=Xie D&publication_year=2019&journal=Nanoscale&volume=11&pages=1360-1369
[98]
Indiveri
G,
Chicca
E,
Douglas
R.
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity..
IEEE Trans Neural Netw,
2006, 17: 211-221
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.&author=Indiveri G&author=Chicca E&author=Douglas R&publication_year=2006&journal=IEEE Trans Neural Netw&volume=17&pages=211-221
[99]
Alquraishi
W,
Fu
Y,
Qiu
W.
Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors.
Org Electron,
2019, 71: 72-78
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors&author=Alquraishi W&author=Fu Y&author=Qiu W&publication_year=2019&journal=Org Electron&volume=71&pages=72-78
[100]
Cheng
W,
Liang
R,
Tian
H.
Proton Conductor Gated Synaptic Transistor Based on Transparent IGZO for Realizing Electrical and UV Light Stimulus.
IEEE J Electron Devices Soc,
2019, 7: 38-45
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proton Conductor Gated Synaptic Transistor Based on Transparent IGZO for Realizing Electrical and UV Light Stimulus&author=Cheng W&author=Liang R&author=Tian H&publication_year=2019&journal=IEEE J Electron Devices Soc&volume=7&pages=38-45
[101]
Jeon
S,
Song
I,
Lee
S.
Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects..
Adv Mater,
2014, 26: 7102-7109
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects.&author=Jeon S&author=Song I&author=Lee S&publication_year=2014&journal=Adv Mater&volume=26&pages=7102-7109
[102]
Ahn
S E,
Song
I,
Jeon
S.
Metal oxide thin film phototransistor for remote touch interactive displays..
Adv Mater,
2012, 24: 2631-2636
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal oxide thin film phototransistor for remote touch interactive displays.&author=Ahn S E&author=Song I&author=Jeon S&publication_year=2012&journal=Adv Mater&volume=24&pages=2631-2636
[103]
Wu
Q,
Wang
J,
Cao
J.
Photoelectric Plasticity in Oxide Thin Film Transistors with Tunable Synaptic Functions.
Adv Electron Mater,
2018, 4: 1800556
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photoelectric Plasticity in Oxide Thin Film Transistors with Tunable Synaptic Functions&author=Wu Q&author=Wang J&author=Cao J&publication_year=2018&journal=Adv Electron Mater&volume=4&pages=1800556
[104]
Gao S, Liu G, Yang H, et al. An oxide schottky junction artificial optoelectronic synapse. ACS Nano, 2019, 13: 2634-2642.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao S, Liu G, Yang H, et al. An oxide schottky junction artificial optoelectronic synapse. ACS Nano, 2019, 13: 2634-2642&
[105]
Shao
L,
Wang
H,
Yang
Y.
Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices.
ACS Appl Mater Interfaces,
2019, 11: 12161-12169
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices&author=Shao L&author=Wang H&author=Yang Y&publication_year=2019&journal=ACS Appl Mater Interfaces&volume=11&pages=12161-12169
[106]
Tan
H,
Ni
Z,
Peng
W.
Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing.
Nano Energy,
2018, 52: 422-430
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing&author=Tan H&author=Ni Z&author=Peng W&publication_year=2018&journal=Nano Energy&volume=52&pages=422-430
[107]
Yin
L,
Han
C,
Zhang
Q.
Synaptic silicon-nanocrystal phototransistors for neuromorphic computing.
Nano Energy,
2019, 63: 103859
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic silicon-nanocrystal phototransistors for neuromorphic computing&author=Yin L&author=Han C&author=Zhang Q&publication_year=2019&journal=Nano Energy&volume=63&pages=103859
[108]
Li
H K,
Chen
T P,
Liu
P.
A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO$_{x}$-Al$_{2}$O$_{3}$ thin film structure.
J Appl Phys,
2016, 119: 244505
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO$_{x}$-Al$_{2}$O$_{3}$ thin film structure&author=Li H K&author=Chen T P&author=Liu P&publication_year=2016&journal=J Appl Phys&volume=119&pages=244505
[109]
Hu
D C,
Yang
R,
Jiang
L.
ACS Appl Mater Interfaces,
2018, 10: 6463-6470
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Hu D C&author=Yang R&author=Jiang L&publication_year=2018&journal=ACS Appl Mater Interfaces&volume=10&pages=6463-6470
[110]
Dai
S,
Wu
X,
Liu
D.
Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors.
ACS Appl Mater Interfaces,
2018, 10: 21472-21480
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors&author=Dai S&author=Wu X&author=Liu D&publication_year=2018&journal=ACS Appl Mater Interfaces&volume=10&pages=21472-21480
[111]
Gou G, Sun J, Qian C, et al. Artificial synapses based on biopolymer electrolyte-coupled SnO$_2$ nanowire transistors. J Mater Chem C, 2016, 4: 11110-11117.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gou G, Sun J, Qian C, et al. Artificial synapses based on biopolymer electrolyte-coupled SnO$_2$ nanowire transistors. J Mater Chem C, 2016, 4: 11110-11117&
[112]
Liu
Y,
Huang
W,
Wang
X.
A Hybrid Phototransistor Neuromorphic Synapse.
IEEE J Electron Devices Soc,
2019, 7: 13-17
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Hybrid Phototransistor Neuromorphic Synapse&author=Liu Y&author=Huang W&author=Wang X&publication_year=2019&journal=IEEE J Electron Devices Soc&volume=7&pages=13-17
[113]
Guo
Y B,
Zhu
L Q,
Gao
W T.
Low-voltage protonic/photonic synergic coupled oxide phototransistor.
Org Electron,
2019, 71: 31-35
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-voltage protonic/photonic synergic coupled oxide phototransistor&author=Guo Y B&author=Zhu L Q&author=Gao W T&publication_year=2019&journal=Org Electron&volume=71&pages=31-35
[114]
John
R A,
Liu
F,
Chien
N A.
Synergistic Gating of Electro-Iono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity..
Adv Mater,
2018, 30: 1800220
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synergistic Gating of Electro-Iono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity.&author=John R A&author=Liu F&author=Chien N A&publication_year=2018&journal=Adv Mater&volume=30&pages=1800220
[115]
Wang
S,
Chen
C,
Yu
Z.
Adv Mater,
2019, 31: 1806227
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?author=Wang S&author=Chen C&author=Yu Z&publication_year=2019&journal=Adv Mater&volume=31&pages=1806227