logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 1 : 87-127(2020) https://doi.org/10.1360/SSI-2019-0242

Status and prospect of China's deep space TT&C network

More info
  • ReceivedOct 31, 2019
  • AcceptedDec 14, 2019
  • PublishedJan 13, 2020

Abstract


Funded by

国家中长期科技发展规划重大专项(探月工程)


Acknowledgment

中国科学院上海天文台黄勇研究员、北京跟踪与通信技术研究所徐得珍助理研究员, 对本文撰写提供了有益的帮助.


References

[1] Luan E J. Penetration point of China's space exploration------the point of large system of earth-lunar-sun. Spacecraft Eng, 2007, 16: 1--8. Google Scholar

[2] Wu W R, Yu D Y, Huang J C, et al. Exploring the solar system boundary. Sci Sin Inform, 2019, 49: 1--16. Google Scholar

[3] Consultative Committee for Space Data Systems (CCSDS). Radio frequency and modulation systems---part 1 earth stations and spacecraft. Recommendations for Space Data System Standards CCSDS 401.0-B. Blue Book, 2008. https://public.ccsds.org/Pubs/401x0b29.pdf. Google Scholar

[4] Wu W R. Deep space exploration and deep space TT&C communication technology. In: Proceedings of the 9th Annual Conference of Deep Space Exploration Technology Committee of Chinese Astronautical Society, Hangzhou, 2012. Google Scholar

[5] Wu W R, Yu D Y. Development of deep space exploration and its future key technologies. J Deep Space Exp, 2014, 1: 5--17. Google Scholar

[6] Wu W R, Liu W W, Tang Y H, et al. Development trends of deep space exploration and several key technologies. łinebreak In: Proceedings of the 10th Annual Conference of Deep Space Exploration Technology Committee, 2013. Google Scholar

[7] Ye P J, Huang J C, Sun Z Z. The process and experience in the development of Chinese lunar probe. Sci Sin Tech, 2014, 44: 543-558 CrossRef Google Scholar

[8] Chief Editorial Committee of Encyclopedia of China. Encyclopedia of China---Aerospace Volume. Beijing: Encyclopedia of China Press, 1985. Google Scholar

[9] Wu W R, Dong G L, Li H T, et al. Engineering and Technology of Deep Space TT&C System. Beijing: Science Press, 2013. Google Scholar

[10] Li H T, Wang H, Dong G L. Selection of latitude for a deep space station. J Spacecraft TT&C Tech, 2009, 28: 1--6. Google Scholar

[11] Wu W R, Liu X C. A survey of deep space exploration activities abroad. Aerospace China, 2004, 1: 26--30. Google Scholar

[12] Mudgway D J. Uplink-downlink: a history of the deep space network 1957--1997. National Aeronautics and Space Administration Office of External Relations, Washington, 2001. https://history.nasa.gov/SP-4227/Uplink-Downlink.pdf. Google Scholar

[13] Cheung K-M, Abraham D, Arroyo B, et al. Next-generation ground network architecture for communications and tracking of interplanetary smallsats. In: Proceedings of the CubeSat Developer Workshop, San Luis Obispo, 2015. Google Scholar

[14] International Telecommunication Union (ITU). Protection criteria for deep-space research. ITU-R SA.1157-1. https://www.itu.int/rec/R-REC-SA.1157/en. Google Scholar

[15] Dong G L, Li G M, Wang X Y. China Deep Space Network: System Design and Key Technologies (II) S/X/Ka-Band Deep Space TT&C System. Beijing: Tsinghua University, 2016. Google Scholar

[16] Wu W R, Luo H, Chen M, et al. Design and experiment of deep space telemetry and data transmission system in Libration points 2 exploring. Syst Eng Electron, 2012, 34: 2559--2563. Google Scholar

[17] Wu W R, Cui P Y, Qiao D, et al. Design and performance of exploring trajectory to Sun-Earth L2 point for Chang'E-2 mission. Chin Sci Bull (Chin Ver), 2012, 57: 1987--1991. Google Scholar

[18] Wu W R, Li H T, Dong G L. X-band TT&C technology of Chang'E-2 project. Sci Sin Tech, 2013, 43: 20-27 CrossRef Google Scholar

[19] Wu W R, Huang L, Jie D G. Design and test of X-band TT&C system for Chang'E-2 project. Sci Sin-Inf, 2011, 41: 1171-1183 CrossRef Google Scholar

[20] Wu W R, Yu D Y. Key technologies in the Chang'E-3 Soft-Landing Project. J Deep Space Explor, 2014, 1: 105--109. Google Scholar

[21] Wu W R, Tang Y H, Zhang L H. Design of communication relay mission for supporting lunar-farside soft landing. Sci China Inf Sci, 2018, 61: 040305 CrossRef Google Scholar

[22] Wu E R, Wang Q, Tang Y H, et al. Design of Chang'E-4 Lunar farside soft-landing mission. J Deep Space Explor, 2017, 4: 111--117. Google Scholar

[23] Wu W R, Wang G L, Jie D G. 基于$\Delta$DOR信号的高精度VLBI技术. Sci Sin Inf, 2013, 43: 185-196 CrossRef Google Scholar

[24] Wu W R. Key technologies for lunar and deep space exploration. In: Proceedings of China Deep Space Exploration 6th Annual Conference, Changsha, 2008 [吴伟仁. 月球与深空探测的关键技术. 见: 中国深空探测第六届学术年会, 长沙, 2008. Google Scholar

[25] Li H T. Design Principles and Methods of Deep Space TT&C System. Beijing: Tsinghua University Press, 2014. Google Scholar

[26] Zhang L, Guo L H, Liu X N, et al. Latest progress and trends of development of space laser communication. J Spacecraft TT&C Tech, 2013, 32: 286--293. Google Scholar

[27] Boroson D M, Robinson B S, Murphy D V, et al. Overview and results of the lunar laser communication demonstration. In: Proceedings of SPIE, San Francisico, 2014. Google Scholar

[28] Dong G L, Li H T, Hao W H, et al. Development and future of China's deep space TT&C system. J Deep Space Explor, 2018, 5: 99--114. Google Scholar

[29] Thompson A R, Moran J M, Swenson G W. Interferometry and Synthesis in Radio Astronomy. Hoboken: John Wiley & Sons Inc., 2008. Google Scholar

[30] Li H T, Zhou H, Zhang X L. Research on phase referencing VLBI technique in deep space navigation. J Astronaut, 2018, 39: 147--157. Google Scholar

[31] Martin-Mur T J, Highsmith D E. Mars approach navigation using the VLBA. In: Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, 2009. Google Scholar

[32] Napier P J, Bagri D S, Clark B G. The very long baseline array. Proc IEEE, 1994, 82: 658-672 CrossRef Google Scholar

[33] Bertotti B, Iess L, Tortora P. A test of general relativity using radio links with the Cassini spacecraft. Nature, 2003, 425: 374-376 CrossRef PubMed Google Scholar

[34] Armstrong J W. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking.. Living Rev Relativ, 2006, 9: 1-60 CrossRef PubMed Google Scholar

  • Figure 1

    Configuration of deep space TT&C system

  • Figure 2

    Coverage of spacecraft at different orbital altitudes by NASA's deep space network

  • Figure 3

    Layout of global major deep space TT&C facilities

  • Figure 4

    NASA deep space network layout and composition

  • Figure 5

    Layout of ESA deep space TT&C network

  • Figure 6

    Coverage of China deep space TT&C network at 10$^{\circ}$ elevation

  • Figure 7

    Coverage of China deep space TT&C network at 5$^{\circ}$ elevation

  • Figure 8

    Jiamusi deep space station 66 m TT&C equipment and site surrounding terrain

  • Figure 9

    Kashi deep space station 35 m TT&C equipment and site surrounding terrain

  • Figure 10

    Argentina deep space station 35 m TT&C equipment and site surrounding terrain

  • Figure 11

    Beam waveguide structure of 35 m deep space TT&C antenna (left) and dichroic mirror (right)

  • Figure 12

    Jiamusi 66 m deep space TT&C equipment S-band (left) 10 kW transmitter and X-band (right) 10 kW transmitter

  • Figure 13

    X band refrigeration receiver and low temperature amplifier of deep space TT&C equipment

  • Figure 14

    Active hydrogen clock and frequency purifier of deep space TT&C equipment

  • Figure 15

    The Chang'E-4 lander on the far side of the moon, the Yutu-2 lunar rover and the Queqiao relay satellite

  • Figure 16

    Schematic diagram of 4$\times$35 m antenna array of China kashi deep space station

  • Figure 17

    Schematic diagram of China's domestic wide area antenna array

  • Figure 18

    Distribution of potential deep space optical communications optional ground sites

  • Figure 19

    Schematic diagram of 35 m deep space RF/optical hybrid system

  • Figure 20

    Interferometry baseline combination under the condition of International cooperation of China deep space TT&C network

  • Figure 21

    Spatial frequency UV plane coverage for the Chinese VLBI Network with ESA for declination 30$^\circ$

  • Figure 22

    China cislunar space VLBI concept

  • Table 1   Frequency band for deep space TT&C
    Frequency band Uplink (MHz) Downlink (MHz)
    S-band 2025$\sim$2120 2200$\sim$2300
    X-band 7145$\sim$7235 8400$\sim$8500
    Ka-band 34200$\sim$34700 31800$\sim$32300
  • Table 2   The output signal of time-frequency subsystem of deep space TT&C equipment
    Number Signal types Number of signal
    1 10 MHz sine wave 16
    2 100 MHz sine wave 16
    3 1 pps 12
    4 10 pps 5
    5 100 pps 5
    6 1 kpps 5
    7 IRIG-B (TTL) output 16
    8 Monitoring of time and frequency 1
  • Table 3   Performance comparison of international typical large-diameter TT&C equipment (64 m/66 m)
    Russia 64 m Japan 64 m Italy 64 m China 66 m
    S-band EIRP (dBW) 104 97.3
    S-band G/T (dB/K) 44 (15$^\circ$ EL) 41 (15$^\circ$ EL) 41.8 (10$^\circ$ EL)
    X-band EIRP (dBW) 107.8 113 108 108.3
    X-band G/T (dB/K) 51.7 (5$^\circ$ EL) 55.1 (15$^\circ$ EL) 54.5 (10$^\circ$ EL) 53.3 (10$^\circ$ EL)
  • Table 4   Performance comparison of international typical large-diameter TT&C equipment (34 m/35 m)
    ESA 35 m NASA 35 m China 35 m
    S-band EIRP (dBW) 97 98.1 93
    S-band G/T (dB/K) 37.5 (10$^\circ$ EL) 39.4 (10$^\circ$ EL) 37 (10$^\circ$ EL)
    X-band EIRP (dBW) 107 109.4 104
    X-band G/T (dB/K) 50.1 (10$^\circ$ EL) 50.0 (10$^\circ$ EL) 50.0 (10$^\circ$ EL)
    Ka-band EIRP (dBW) 101 (design value) 108.5 (DSS-25) (Scalable)
    Ka-band G/T (dB/K) 55.8 (10$^\circ$ EL) 60.8 (45$^\circ$ EL) 56 (10$^\circ$ EL)
  • Table 5   Antenna array and a single large antenna performance comparison
    NASA 70 m China 66 m ESA 35 m China 35 m China wide area antenna array
    X-band G/T (dB/K) 57 53.3 51 50 $\ge$ 61
    Ka-band G/T (dB/K) 55.8 56 $\ge$ 67.5
  • Table 6   Power comparison of deep space TT&C transmitter
    Nation or organization Frequency band Maximum transmitted power
    S 20/400 kW
    US X 20/80 kW
    Ka 800 W
    ESA S 20 kW
    X 20 kW
    China S 10 kW
    X 10/50 kW
  • Table 7   The measurement capability of the lunar VLBI with ground stations network
    Ground station Sensitivity (mJy) SNR$^{\rm~a)}$ Accuracy of delay (ps)
    Tianma 65 m 2.5 20 53
    FAST 0.8 63 17

    a) SNR: signal to noise ratio.