国家中长期科技发展规划重大专项(探月工程)
中国科学院上海天文台黄勇研究员、北京跟踪与通信技术研究所徐得珍助理研究员, 对本文撰写提供了有益的帮助.
[1] Luan E J. Penetration point of China's space exploration------the point of large system of earth-lunar-sun. Spacecraft Eng, 2007, 16: 1--8. Google Scholar
[2] Wu W R, Yu D Y, Huang J C, et al. Exploring the solar system boundary. Sci Sin Inform, 2019, 49: 1--16. Google Scholar
[3] Consultative Committee for Space Data Systems (CCSDS). Radio frequency and modulation systems---part 1 earth stations and spacecraft. Recommendations for Space Data System Standards CCSDS 401.0-B. Blue Book, 2008. https://public.ccsds.org/Pubs/401x0b29.pdf. Google Scholar
[4] Wu W R. Deep space exploration and deep space TT&C communication technology. In: Proceedings of the 9th Annual Conference of Deep Space Exploration Technology Committee of Chinese Astronautical Society, Hangzhou, 2012. Google Scholar
[5] Wu W R, Yu D Y. Development of deep space exploration and its future key technologies. J Deep Space Exp, 2014, 1: 5--17. Google Scholar
[6] Wu W R, Liu W W, Tang Y H, et al. Development trends of deep space exploration and several key technologies. łinebreak In: Proceedings of the 10th Annual Conference of Deep Space Exploration Technology Committee, 2013. Google Scholar
[7] Ye P J, Huang J C, Sun Z Z. The process and experience in the development of Chinese lunar probe. Sci Sin Tech, 2014, 44: 543-558 CrossRef Google Scholar
[8] Chief Editorial Committee of Encyclopedia of China. Encyclopedia of China---Aerospace Volume. Beijing: Encyclopedia of China Press, 1985. Google Scholar
[9] Wu W R, Dong G L, Li H T, et al. Engineering and Technology of Deep Space TT&C System. Beijing: Science Press, 2013. Google Scholar
[10] Li H T, Wang H, Dong G L. Selection of latitude for a deep space station. J Spacecraft TT&C Tech, 2009, 28: 1--6. Google Scholar
[11] Wu W R, Liu X C. A survey of deep space exploration activities abroad. Aerospace China, 2004, 1: 26--30. Google Scholar
[12] Mudgway D J. Uplink-downlink: a history of the deep space network 1957--1997. National Aeronautics and Space Administration Office of External Relations, Washington, 2001. https://history.nasa.gov/SP-4227/Uplink-Downlink.pdf. Google Scholar
[13] Cheung K-M, Abraham D, Arroyo B, et al. Next-generation ground network architecture for communications and tracking of interplanetary smallsats. In: Proceedings of the CubeSat Developer Workshop, San Luis Obispo, 2015. Google Scholar
[14] International Telecommunication Union (ITU). Protection criteria for deep-space research. ITU-R SA.1157-1. https://www.itu.int/rec/R-REC-SA.1157/en. Google Scholar
[15] Dong G L, Li G M, Wang X Y. China Deep Space Network: System Design and Key Technologies (II) S/X/Ka-Band Deep Space TT&C System. Beijing: Tsinghua University, 2016. Google Scholar
[16] Wu W R, Luo H, Chen M, et al. Design and experiment of deep space telemetry and data transmission system in Libration points 2 exploring. Syst Eng Electron, 2012, 34: 2559--2563. Google Scholar
[17] Wu W R, Cui P Y, Qiao D, et al. Design and performance of exploring trajectory to Sun-Earth L2 point for Chang'E-2 mission. Chin Sci Bull (Chin Ver), 2012, 57: 1987--1991. Google Scholar
[18] Wu W R, Li H T, Dong G L. X-band TT&C technology of Chang'E-2 project. Sci Sin Tech, 2013, 43: 20-27 CrossRef Google Scholar
[19] Wu W R, Huang L, Jie D G. Design and test of X-band TT&C system for Chang'E-2 project. Sci Sin-Inf, 2011, 41: 1171-1183 CrossRef Google Scholar
[20] Wu W R, Yu D Y. Key technologies in the Chang'E-3 Soft-Landing Project. J Deep Space Explor, 2014, 1: 105--109. Google Scholar
[21] Wu W R, Tang Y H, Zhang L H. Design of communication relay mission for supporting lunar-farside soft landing. Sci China Inf Sci, 2018, 61: 040305 CrossRef Google Scholar
[22] Wu E R, Wang Q, Tang Y H, et al. Design of Chang'E-4 Lunar farside soft-landing mission. J Deep Space Explor, 2017, 4: 111--117. Google Scholar
[23] Wu W R, Wang G L, Jie D G. 基于$\Delta$DOR信号的高精度VLBI技术. Sci Sin Inf, 2013, 43: 185-196 CrossRef Google Scholar
[24] Wu W R. Key technologies for lunar and deep space exploration. In: Proceedings of China Deep Space Exploration 6th Annual Conference, Changsha, 2008 [吴伟仁. 月球与深空探测的关键技术. 见: 中国深空探测第六届学术年会, 长沙, 2008. Google Scholar
[25] Li H T. Design Principles and Methods of Deep Space TT&C System. Beijing: Tsinghua University Press, 2014. Google Scholar
[26] Zhang L, Guo L H, Liu X N, et al. Latest progress and trends of development of space laser communication. J Spacecraft TT&C Tech, 2013, 32: 286--293. Google Scholar
[27] Boroson D M, Robinson B S, Murphy D V, et al. Overview and results of the lunar laser communication demonstration. In: Proceedings of SPIE, San Francisico, 2014. Google Scholar
[28] Dong G L, Li H T, Hao W H, et al. Development and future of China's deep space TT&C system. J Deep Space Explor, 2018, 5: 99--114. Google Scholar
[29] Thompson A R, Moran J M, Swenson G W. Interferometry and Synthesis in Radio Astronomy. Hoboken: John Wiley & Sons Inc., 2008. Google Scholar
[30] Li H T, Zhou H, Zhang X L. Research on phase referencing VLBI technique in deep space navigation. J Astronaut, 2018, 39: 147--157. Google Scholar
[31] Martin-Mur T J, Highsmith D E. Mars approach navigation using the VLBA. In: Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, 2009. Google Scholar
[32] Napier P J, Bagri D S, Clark B G. The very long baseline array. Proc IEEE, 1994, 82: 658-672 CrossRef Google Scholar
[33] Bertotti B, Iess L, Tortora P. A test of general relativity using radio links with the Cassini spacecraft. Nature, 2003, 425: 374-376 CrossRef PubMed Google Scholar
[34] Armstrong J W. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking.. Living Rev Relativ, 2006, 9: 1-60 CrossRef PubMed Google Scholar
Figure 1
Configuration of deep space TT&C system
Figure 2
Coverage of spacecraft at different orbital altitudes by NASA's deep space network
Figure 3
Layout of global major deep space TT&C facilities
Figure 4
NASA deep space network layout and composition
Figure 5
Layout of ESA deep space TT&C network
Figure 6
Coverage of China deep space TT&C network at 10$^{\circ}$ elevation
Figure 7
Coverage of China deep space TT&C network at 5$^{\circ}$ elevation
Figure 8
Jiamusi deep space station 66 m TT&C equipment and site surrounding terrain
Figure 9
Kashi deep space station 35 m TT&C equipment and site surrounding terrain
Figure 10
Argentina deep space station 35 m TT&C equipment and site surrounding terrain
Figure 11
Beam waveguide structure of 35 m deep space TT&C antenna (left) and dichroic mirror (right)
Figure 12
Jiamusi 66 m deep space TT&C equipment S-band (left) 10 kW transmitter and X-band (right) 10 kW transmitter
Figure 13
X band refrigeration receiver and low temperature amplifier of deep space TT&C equipment
Figure 14
Active hydrogen clock and frequency purifier of deep space TT&C equipment
Figure 15
The Chang'E-4 lander on the far side of the moon, the Yutu-2 lunar rover and the Queqiao relay satellite
Figure 16
Schematic diagram of 4$\times$35 m antenna array of China kashi deep space station
Figure 17
Schematic diagram of China's domestic wide area antenna array
Figure 18
Distribution of potential deep space optical communications optional ground sites
Figure 19
Schematic diagram of 35 m deep space RF/optical hybrid system
Figure 20
Interferometry baseline combination under the condition of International cooperation of China deep space TT&C network
Figure 21
Spatial frequency UV plane coverage for the Chinese VLBI Network with ESA for declination 30$^\circ$
Figure 22
China cislunar space VLBI concept
Frequency band | Uplink (MHz) | Downlink (MHz) |
S-band | 2025$\sim$2120 | 2200$\sim$2300 |
X-band | 7145$\sim$7235 | 8400$\sim$8500 |
Ka-band | 34200$\sim$34700 | 31800$\sim$32300 |
Number | Signal types | Number of signal |
1 | 10 MHz sine wave | 16 |
2 | 100 MHz sine wave | 16 |
3 | 1 pps | 12 |
4 | 10 pps | 5 |
5 | 100 pps | 5 |
6 | 1 kpps | 5 |
7 | IRIG-B (TTL) output | 16 |
8 | Monitoring of time and frequency | 1 |
Russia 64 m | Japan 64 m | Italy 64 m | China 66 m | |
S-band EIRP (dBW) | – | 104 | – | 97.3 |
S-band G/T (dB/K) | – | 44 (15$^\circ$ EL) | 41 (15$^\circ$ EL) | 41.8 (10$^\circ$ EL) |
X-band EIRP (dBW) | 107.8 | 113 | 108 | 108.3 |
X-band G/T (dB/K) | 51.7 (5$^\circ$ EL) | 55.1 (15$^\circ$ EL) | 54.5 (10$^\circ$ EL) | 53.3 (10$^\circ$ EL) |
ESA 35 m | NASA 35 m | China 35 m | |
S-band EIRP (dBW) | 97 | 98.1 | 93 |
S-band G/T (dB/K) | 37.5 (10$^\circ$ EL) | 39.4 (10$^\circ$ EL) | 37 (10$^\circ$ EL) |
X-band EIRP (dBW) | 107 | 109.4 | 104 |
X-band G/T (dB/K) | 50.1 (10$^\circ$ EL) | 50.0 (10$^\circ$ EL) | 50.0 (10$^\circ$ EL) |
Ka-band EIRP (dBW) | 101 (design value) | 108.5 (DSS-25) | (Scalable) |
Ka-band G/T (dB/K) | 55.8 (10$^\circ$ EL) | 60.8 (45$^\circ$ EL) | 56 (10$^\circ$ EL) |
NASA 70 m | China 66 m | ESA 35 m | China 35 m | China wide area antenna array | |
X-band G/T (dB/K) | 57 | 53.3 | 51 | 50 | $\ge$ 61 |
Ka-band G/T (dB/K) | – | – | 55.8 | 56 | $\ge$ 67.5 |
Nation or organization | Frequency band | Maximum transmitted power |
S | 20/400 kW | |
US | X | 20/80 kW |
Ka | 800 W | |
ESA | S | 20 kW |
X | 20 kW | |
China | S | 10 kW |
X | 10/50 kW |
Ground station | Sensitivity (mJy) | SNR$^{\rm~a)}$ | Accuracy of delay (ps) |
Tianma 65 m | 2.5 | 20 | 53 |
FAST | 0.8 | 63 | 17 |
a) SNR: signal to noise ratio.