logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 12 : 1961(2020) https://doi.org/10.1360/SSI-2019-0199

Balanced dual-band superconducting filter using square ring loaded resonators with ultra-low insertion loss and common-mode noise suppression

More info
  • ReceivedSep 15, 2019
  • AcceptedNov 19, 2019
  • PublishedOct 21, 2020

Abstract


Funded by

国家自然科学基金重点项目(U1831201)

国家重点研发计划(2017YFE0128200)

陕西省国际科技合作计划项目(2019KW-003)

江西省自然科学基金重点项目(2017ACB20019)


References

[1] Baars J W M, D'Addario L R, Thompson A R. Radio Astronomy in the Early Twenty-First Century. Proc IEEE, 2009, 97: 1377-1381 CrossRef Google Scholar

[2] Martín F, Zhu L, Hong J S, et al. Balanced Microwave Filters. New York: Wiley, 2018. 3--21. Google Scholar

[3] Feng W, Che W, Xue Q. The Proper Balance: Overview of Microstrip Wideband Balance Circuits with Wideband Common Mode Suppression. IEEE Microwave, 2015, 16: 55-68 CrossRef Google Scholar

[4] Yan T, Lu D, Wang J. High-Selectivity Balanced Bandpass Filter With Mixed Electric and Magnetic Coupling. IEEE Microw Wireless Compon Lett, 2016, 26: 398-400 CrossRef Google Scholar

[5] Wu C H, Wang C H, Chen C H. Novel Balanced Coupled-Line Bandpass Filters With Common-Mode Noise Suppression. IEEE Trans Microwave Theor Tech, 2007, 55: 287-295 CrossRef Google Scholar

[6] Guo X, Zhu L, Wu W. Strip-Loaded Slotline Resonators for Differential Wideband Bandpass Filters With Intrinsic Common-Mode Rejection. IEEE Trans Microwave Theor Tech, 2016, : 1-9 CrossRef Google Scholar

[7] Fernandez-Prieto A, Lujambio A, Martel J. Simple and Compact Balanced Bandpass Filters Based on Magnetically Coupled Resonators. IEEE Trans Microwave Theor Tech, 2015, 63: 1843-1853 CrossRef Google Scholar

[8] Medina F, Boix R R, Lujambio A. Balanced bandpass filter based on magnetically coupled coplanar waveguide folded-stepped impedance resonators. Electron Lett, 2016, 60: 1229-1231 CrossRef Google Scholar

[9] Jin Shi , Quan Xue . Novel Balanced Dual-Band Bandpass Filter Using Coupled Stepped-Impedance Resonators. IEEE Microw Wireless Compon Lett, 2010, 20: 19-21 CrossRef Google Scholar

[10] Shi J, Xue Q. Dual-Band and Wide-Stopband Single-Band Balanced Bandpass Filters With High Selectivity and Common-Mode Suppression. IEEE Trans Microwave Theor Tech, 2010, 58: 2204-2212 CrossRef Google Scholar

[11] Cho Y H, Yun S W. Design of Balanced Dual-Band Bandpass Filters Using Asymmetrical Coupled Lines. IEEE Trans Microwave Theor Tech, 2013, 61: 2814-2820 CrossRef Google Scholar

[12] Shen Y, Wang H, Kang W. Dual-Band SIW Differential Bandpass Filter With Improved Common-Mode Suppression. IEEE Microw Wireless Compon Lett, 2015, 25: 100-102 CrossRef Google Scholar

[13] Yang L, Choi W W, Tam K W. Balanced Dual-Band Bandpass Filter With Multiple Transmission Zeros Using Doubly Short-Ended Resonator Coupled Line. IEEE Trans Microwave Theor Tech, 2015, 63: 2225-2232 CrossRef Google Scholar

[14] Bagci F, Fernandez-Prieto A, Lujambio A. Compact Balanced Dual-Band Bandpass Filter Based on Modified Coupled-Embedded Resonators. IEEE Microw Wireless Compon Lett, 2017, 27: 31-33 CrossRef Google Scholar

[15] Wu X, Wan F, Ge J. Stub-Loaded Theory and Its Application to Balanced Dual-Band Bandpass Filter Design. IEEE Microw Wireless Compon Lett, 2016, 26: 231-233 CrossRef Google Scholar

[16] Lee C H, Hsu C I G, Hsu C C. Balanced Dual-Band BPF With Stub-Loaded SIRs for Common-Mode Suppression. IEEE Microw Wireless Compon Lett, 2010, 20: 70-72 CrossRef Google Scholar

[17] Ren B, Liu H, Ma Z. Compact Dual-Band Differential Bandpass Filter Using Quadruple-Mode Stepped-Impedance Square Ring Loaded Resonators. IEEE Access, 2018, 6: 21850-21858 CrossRef Google Scholar

[18] Zhou L H, Chen J X. Differential Dual-Band Filters With Flexible Frequency Ratio Using Asymmetrical Shunt Branches for Wideband CM Suppression. IEEE Trans Microwave Theor Tech, 2017, 65: 4606-4615 CrossRef Google Scholar

[19] Li H, Zhang X Q, Zhang Q. 高温超导滤波器应用的探索与实践. Sci Sin-Phys Mech Astron, 2012, 42: 767-792 CrossRef Google Scholar

[20] Ji L Y, Liu B, Ma J. 双通带高温超导滤波器的研制. Sci Sin-Inf, 2011, 41: 121-126 CrossRef Google Scholar

[21] 左 , 阎 , 方 . 用于下一代移动通信系统上的高温超导滤波器子系统. SSIF, 2008, 38: 291-297 CrossRef Google Scholar

[22] Xilong Lu , Bin Wei , Bisong Cao . Design of a High-Order Dual-Band Superconducting Filter With Controllable Frequencies and Bandwidths. IEEE Trans Appl Supercond, 2014, 24: 3-7 CrossRef Google Scholar

[23] Song F, Wei B, Zhu L. Dual-Band High-Temperature Superconducting Bandpass Filter Using Quint-Mode Stub-Loaded Resonators. IEEE Trans Appl Supercond, 2015, 25: 1-10 CrossRef Google Scholar

[24] Ma P, Wei B, Hong J. Design of Dual-Mode Dual-Band Superconducting Filters. IEEE Trans Appl Supercond, 2017, 27: 1-9 CrossRef Google Scholar

[25] Liu H, Liu F, Qin F. Compact Dual-Band HTS Bandpass Filter Using Spirally Asymmetric Stepped-Impedance Resonators. IEEE Trans Appl Supercond, 2016, 26: 1-5 CrossRef Google Scholar

[26] Liu H, Ren B, Hu S. High-Order Dual-Band Superconducting Bandpass Filter With Controllable Bandwidths and Multitransmission Zeros. IEEE Trans Microwave Theor Tech, 2017, 65: 3813-3823 CrossRef Google Scholar

[27] Ren B, Ma Z, Liu H. Differential Dual-Band Superconducting Bandpass Filter Using Multimode Square Ring Loaded Resonators With Controllable Bandwidths. IEEE Trans Microwave Theor Tech, 2019, 67: 726-737 CrossRef Google Scholar

[28] Liu H, Ren B, Guan X. Quad-Band High-Temperature Superconducting Bandpass Filter Using Quadruple-Mode Square Ring Loaded Resonator. IEEE Trans Microwave Theor Tech, 2014, 62: 2931-2941 CrossRef Google Scholar

[29] Hong J S, Lancaster M J. Microwave Filter for RF/Microwave Application. Second Edition. New York: Wiley, 2001. 221-227. Google Scholar

  • Figure 1

    (Color online) (a) Layout of the proposed multi-mode SRLR; (b) DM equivalent circuit; (c) CM equivalent circuit

  • Figure 2

    (Color online) (a) H-shaped DM equivalent circuit, its (b) odd-mode and (c) even-mode resonators

  • Figure 3

    (Color online) The first two DM resonant frequencies $f_{d1}$ and $f_{d2}$ versus $\theta_1$ and $\theta_2$ under condition of $\theta_2$ + $\theta_3$ = 90$^{\circ}$

  • Figure 4

    (Color online) (a) CM equivalent circuit, its (b) odd-mode and (c) even-mode resonators

  • Figure 7

    (Color online) Configuration of the proposed fourth-order balanced dual-band BPF

  • Figure 8

    (Color online) Coupling diagram of the balanced dual-band filter

  • Figure 9

    (Color online) (a) Proposed SRLR; (b) folded SRLR; (c) $S_{21}$ magnitude of the folded SRLR under DM and CM excitations

  • Figure 10

    (Color online) Coupling coefficients $M_{ij}$ as a function of (a) coupling gap g, where s= 0.56 mm or (b) coupling space s, where g= 0.16 mm

  • Figure 11

    (Color online) (a) The external quality factors Q$_e$ as a function of coupling length $L_{f1}$, where L$_{f2}$ = 1.95 mm and $w_{f}$ = 0.2 mm; (b) the external quality factors Q$_e$ as a function of coupling length L$_{f2}$, where $L_{f1}$ = 4.05 mm and $w_{f}$ = 0.2 mm

  • Figure 12

    (Color online) Simulated DM (${\rm~S}_{\rm~dd11}$ and ${\rm~S}_{\rm~dd21}$) and CM (${\rm~S}_{\rm~cc21}$) responses of the fourth-order balanced dual-band filter in Figure 7

  • Figure 13

    (Color online) (a) Two types of folded multi-mode SRLR; (b) their CM resonances

  • Figure 14

    (Color online) Configuration of the proposed balanced dual-band BPF with two dissimilar types of multi-mode folded SRLRs

  • Figure 15

    (Color online) Simulated results of the proposed balanced dual-band filter. (a) CM response (${\rm~S}_{\rm~cc11}$ and ${\rm~S}_{\rm~cc21}$) and (b) DM response (${\rm~S}_{\rm~dd11}$ and ${\rm~S}_{\rm~dd21}$)

  • Figure 16

    (Color online) Photograph of the fabricated fourth-order balanced dual-band HTS filter

  • Figure 17

    (Color online) Measurement and simulation results of the proposed filter. (a) CM response; (b) DM response

  • Figure 18

    (Color online) The enlarged scale of measurement and simulation results of the two passbands. (a) Passband 2.2 GHz; (b) passband 3.5 GHz

  • Table 1   Geometric parameters of the SRLR in Figure (b) (mm)
    Parameter Value Parameter Value Parameter Value Parameter Value
    L$_1$ 8.6 L$_5$ 0.875 L$_9$ 1.1 L$_{\textit{s}1}$ 0.55
    L$_2$ 1.6 L$_6$ 1.1 L$_{10}$ 3.2 L$_{\textit{s}2}$ 0.48
    L$_3$ 1.9 L$_7$ 2.125 L$_{11}$ 0.3 w$_1$ 0.3
    L$_4$ 1.6 L$_8$ 0.7 L$_{12}$ 1.75 w$_1$ 0.5
  • Table 2   Geometric parameters of filter in Figure (mm)
    Parameter Value Parameter Value Parameter Value Parameter Value
    L$_1$ 8.6 L$_5$ 0.875 L$_9$ 1.1 L$_{\textit{s}1}$ 0.55
    L$_2$ 1.6 L$_6$ 1.1 L$_{10}$ 3.2 L$_{\textit{s}2}$ 0.48
    L$_3$ 1.9 L$_7$ 2.125 L$_{11}$ 0.3 w$_1$ 0.3
    L$_4$ 1.6 L$_8$ 0.7 L$_{12}$ 1.75 w$_1$ 0.5
    s$_{12}$ 0.48 s$_{23}$ 0.55 s$_{34}$ 0.48 g$_{12}$ 0.08
    g$_{23}$ 0.15 g$_{34}$ 0.08 $L_{f1}$ 4.05 L$_{f2}$ 2.89
  • Table 3   Comparison of the proposed filter and the referenced works
    Ref. Center frequency (GHz)FBW (%) IL (dB) Circuit size ($\lambda\textit{g}\times\lambda\textit{g}$) Filter order In-band CM (dB) CM rejection level (center frequency $f_{d0}$)
    [9] 2.4/5.0 16.4/8.6 1.78/2.53 0.50 $\times$ 0.70 4 32/32 27 dB up to 3.27$f_{d0}$
    [10] 2.46/5.56 16.3/6.7 1.9/1.9 0.31 $\times$ 0.41 4 36/31 35 dB up to 7.06$f_{d0}$
    [11] 2.4/3.57 7.5/6.61 0.87/1.9 0.50 $\times$ 0.20 2 24/38 18 dB up to 1.88$f_{d0}$
    [12] 9.23/14.1 2.8/5.6 2.9/2.7 2.70 $\times$ 1.27 2 48/40 20 dB up to 1.65$f_{d0}$
    [13] 0.9/2.49 3.6/2.1 2.67/4.65 0.67 $\times$ 0.32 2 30/40 20.2 dB up to 5.56$f_{d0}$
    [14] 2.5/5.6 8.0/5.0 1.29/1.97 0.15 $\times$ 0.27 2 34.7/24.1 9.1 dB up to 2.8$f_{d0}$
    [15] 1.8/5.8 12.2/4.5 1.2/2.0 0.37 $\times$ 0.28 2 35/26 12 dB up to 4.7$f_{d0}$
    [16] 2.45/5.25 9.8/4.6 2.4/2.82 0.38 $\times$ 0.42 2 53/45 21.7 dB up to 3.64$f_{d0}$
    [17] 2.6/5.8 10.4/3.6 1.1/2.15 0.26 $\times$ 0.34 2 62/48 15 dB up to 3.07$f_{d0}$
    [18] 3.58/5.6 5.8/3.4 1.1/1.8 0.25 $\times$ 0.47 2 25/17 17 dB up to 1.82$f_{d0}$
    [27] 2.33/4.9 3.9/4.9 0.13/0.16 0.32 $\times$ 0.31 4 63/40 20 dB up to 2.58$f_{d0}$
    This work 2.2/3.5 2.7/3.8 0.1/0.12 0.50 $\times$ 0.33 4 74.9/67.4 20 dB up to 3.64$f_{d0}$