SCIENTIA SINICA Informationis, Volume 50 , Issue 3 : 307-317(2020) https://doi.org/10.1360/SSI-2019-0186

Cooperative communication based on swarm intelligence: vision, model, and key technology

More info
  • ReceivedAug 28, 2019
  • AcceptedNov 18, 2019
  • PublishedFeb 27, 2020


Funded by

科技创新2030 —“新一代人工智能"重大项目(2018AAA0102303)




[1] Vicsek T, Zafeiris A. Collective motion. Phys Rep, 2012, 517: 71-140 CrossRef Google Scholar

[2] Li W, Wu W J, Wang H M. Crowd intelligence in AI 2.0 era. Front Inf Technol Electron Eng, 2017, 18: 15-43 CrossRef Google Scholar

[3] Daniel P. Gremlins. 2014-06-09. http://www.darpa.mil/program/gremlins. Google Scholar

[4] Office of Naval Research. LOCUST: autonomous, swarming UAVs fly into the future. 2015-04-14. http://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-ONR.aspx. Google Scholar

[5] Hauert S, Winkler L, Zufferey J C. Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intell, 2008, 2: 167-188 CrossRef Google Scholar

[6] Zhao N, Lu W, Sheng M. UAV-Assisted Emergency Networks in Disasters. IEEE Wireless Commun, 2019, 26: 45-51 CrossRef Google Scholar

[7] Zhao N, Cheng F, Yu F R. Caching UAV Assisted Secure Transmission in Hyper-Dense Networks Based on Interference Alignment. IEEE Trans Commun, 2018, 66: 2281-2294 CrossRef Google Scholar

[8] Gupta L, Jain R, Vaszkun G. Survey of Important Issues in UAV Communication Networks. IEEE Commun Surv Tutorials, 2016, 18: 1123-1152 CrossRef Google Scholar

[9] Bekmezci , Sahingoz O K, Temel . Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Networks, 2013, 11: 1254-1270 CrossRef Google Scholar

[10] Goyal P, Parmar V, Rishi R. Manet: vulnerabilities, challenges, attacks, application. Int J Comp Eng & Manage, 2011, 11: 32--37. Google Scholar

[11] Sahingoz O K. Mobile networking with UAVs: opportunities and challenges. In: Proceedings of IEEE International Conference on Unmanned Aircraft Systems (ICUAS), 2013. 933--941. Google Scholar

[12] Hartenstein H, Laberteaux K. VANET: Vehicular Applications and Inter-networking Technologies. Chichester: Wiley, 2010. 49--431. Google Scholar

[13] Zhou Y, Cheng N, Lu N. Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Veh Technol Mag, 2015, 10: 36-44 CrossRef Google Scholar

[14] Beni G, Wang J. Swarm intelligence in cellular robotic systems. In: Robots and biological systems: towards a new bionics? Berlin: Springer, 1993. 703--712. Google Scholar

[15] Bonabeau E, Dorigo M, Marco D R D F, et al. Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press, 1999. 271--273. Google Scholar

[16] Kennedy J, Eberhart R C, Shi Y H. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001. 5--12. Google Scholar

[17] Grassé P P. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs. Ins Soc, 1959, 6: 41-80 CrossRef Google Scholar

[18] Parunak H V D. Making swarming happen. In: Proceedings of Swarming and Network-Enabled C4ISR, 2003. 1--18. Google Scholar

[19] Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour.. Nature, 2000, 406: 39-42 CrossRef PubMed Google Scholar

[20] Duan H B, Qiu H X. Unmanned Aerial Vehicle Swarm Autonomous Control Based on Swarm Intelligence. Beijing: Science Press, 2018. 1--25. Google Scholar

[21] Millonas M M. Swarms, phase transitions, and collective intelligence. Proc Artificial Life, 1993, 101(8): 137--151. Google Scholar

[22] Malone T W, Bernstein M S. Introduction. In: Handbook of Collective Intelligence. Cambridge: MIT Press. 2015. 1--13. Google Scholar

[23] Jing K P, Wang J Q. Research development and prospect of swarm/collective intelligence in foreign countries. Chin High Technol Lett, 2018, 28: 36--47. Google Scholar

[24] Xiao C H. Application of UAV on battlefield reconnaissance. Radio Eng China, 2008, 38: 50--52. Google Scholar

[25] Rosati S, Kru.zelecki K, Traynard L, et al. Speed-aware routing for UAV ad-hoc networks. In: Proceedings of IEEE GLOBECOM 2013, Georgia, 2013. 1367--1373. Google Scholar

[26] Biomo J D M M, Kunz T, St-Hilaire M. Routing in unmanned aerial ad hoc networks: introducing a route reliability criterion. In: Proceedings of the 7th IFIP Wireless and Mobile Networking Conference (WMNC), Vilamoura, 2014. 1--7. Google Scholar

[27] Federal Communications Commission. Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies, NPRM & Order, ET Docket No. 03-108, FCC03-322, 2003. Google Scholar

[28] Mitola J, Maguire G Q. Cognitive radio: making software radios more personal. IEEE Pers Commun, 1999, 6: 13-18 CrossRef Google Scholar

[29] Mitola J. Cognitive radio: an integrated agent architecture for software defined radio. Dissertation for Ph.D. Degree. Sweden: Kungliga Tekniska Hogskolan, 2000. Google Scholar

[30] Haykin S. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun, 2005, 23: 201-220 CrossRef Google Scholar

[31] Federal Communications Commission. Spectrum Policy Task Force. Rep. ET Docket no. 02--135, 2002. Google Scholar

[32] Ma J, Zhang S, Li H. Sparse Bayesian Learning for the Time-Varying Massive MIMO Channels: Acquisition and Tracking. IEEE Trans Commun, 2019, 67: 1925-1938 CrossRef Google Scholar

[33] Liu X, Jia M, Zhang X. A Novel Multichannel Internet of Things Based on Dynamic Spectrum Sharing in 5G Communication. IEEE Internet Things J, 2019, 6: 5962-5970 CrossRef Google Scholar

[34] Sahai A, Hoven N, Tandra R. Some fundamental limits on cognitive radio. In: Proceedings of Allerton Conference on Communication, Control, and Computing, 2004. 1662--1671. Google Scholar

[35] Merchant K, Revay S, Stantchev G. Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks. IEEE J Sel Top Signal Process, 2018, 12: 160-167 CrossRef Google Scholar

[36] Wang X, Wang X, Mao S. RF Sensing in the Internet of Things: A General Deep Learning Framework. IEEE Commun Mag, 2018, 56: 62-67 CrossRef Google Scholar

[37] Wang G, Yang K. A New Approach to Sensor Node Localization Using RSS Measurements in Wireless Sensor Networks. IEEE Trans Wireless Commun, 2011, 10: 1389-1395 CrossRef Google Scholar

[38] Seifeldin M, Saeed A, Kosba A E. Nuzzer: A Large-Scale Device-Free Passive Localization System for Wireless Environments. IEEE Trans Mobile Comput, 2013, 12: 1321-1334 CrossRef Google Scholar

[39] Moore M G, Davenport M A. Analysis of wireless networks using Hawkes processes. In: Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications, 2016. 1--5. Google Scholar

[40] Laghate M, Cabric D. Learning Wireless Networks' Topologies Using Asymmetric Granger Causality. IEEE J Sel Top Signal Process, 2018, 12: 233-247 CrossRef Google Scholar

[41] Klein L A. Sensor and Data Fusion: a Tool for Information Assessment and Decision Making. Bellingham: SPIE press, 2004. 51--95. Google Scholar

[42] Shen F, Ding G, Wang Z. UAV-Based 3D Spectrum Sensing in Spectrum-Heterogeneous Networks. IEEE Trans Veh Technol, 2019, 68: 5711-5722 CrossRef Google Scholar

[43] Steyvers M, Miller B. Cognition and collective intelligence. In: Handbook of collective intelligence. Cambridge: MIT Press. 2015, 1--16. Google Scholar

[44] Prelec D. A Bayesian truth serum for subjective data.. Science, 2004, 306: 462-466 CrossRef PubMed Google Scholar

[45] Wang G, Kulkarni S R, Poor H V. Aggregating Large Sets of Probabilistic Forecasts by Weighted Coherent Adjustment. Decision Anal, 2011, 8: 128-144 CrossRef Google Scholar

[46] Ding G, Wang J, Wu Q. On the limits of predictability in real-world radio spectrum state dynamics: from entropy theory to 5G spectrum sharing. IEEE Commun Mag, 2015, 53: 178-183 CrossRef Google Scholar

[47] Sun J, Shen L, Ding G. Predictability Analysis of Spectrum State Evolution: Performance Bounds and Real-World Data Analytics. IEEE Access, 2017, 5: 22760-22774 CrossRef Google Scholar

[48] Ding G, Jiao Y, Wang J. Spectrum Inference in Cognitive Radio Networks: Algorithms and Applications. IEEE Commun Surv Tutorials, 2018, 20: 150-182 CrossRef Google Scholar

[49] Sun J, Wang J, Ding G. Long-Term Spectrum State Prediction: An Image Inference Perspective. IEEE Access, 2018, 6: 43489-43498 CrossRef Google Scholar

[50] Yu L, Chen J, Zhang Y. Deep spectrum prediction in high frequency communication based on temporal-spectral residual network. China Commun, 2018, 15: 25-34 CrossRef Google Scholar

[51] Yu L, Chen J, Ding G. Spectrum Prediction Based on Taguchi Method in Deep Learning With Long Short-Term Memory. IEEE Access, 2018, 6: 45923-45933 CrossRef Google Scholar