国家自然科学基金(61773341)
[1] Chandler D C, Smith I E. Development of the iterative guidance mode with its application to various vehicles and missions.. J Spacecraft Rockets, 1967, 4: 898-903 CrossRef ADS Google Scholar
[2] Mchenry R L, Long A D, Cockrell B F, et al. Space Shuttle ascent guidance, navigation, and control. J Astronaut Sci, 1979, 27: 1--38. Google Scholar
[3] Starek J A, Acikmese B, Nesnas I A, et al. Spacecraft Autonomy Challenges for Next-Generation Space Missions. In: Advances in Control System Technology for Aerospace Applications. Berlin: Springer, 2016. 460: 1--48. Google Scholar
[4] Shotwell R. History of Mars Ascent Vehicle development over the last 20 years. In: Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, 2016. 1--11. Google Scholar
[5] Lugo R, Litton D, Qu M, et al. A robust method to integrate end-to-end mission architecture optimization tools. In: Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, 2016. 1--8. Google Scholar
[6] Lu P. Introducing Computational Guidance and Control. J Guidance Control Dyn, 2017, 40: 193-193 CrossRef ADS Google Scholar
[7] Blackmore L. Autonomous precision landing of space rockets. The BRIDGE, 2016, 46: 15-20. Google Scholar
[8] Scharf D P, Acikmese B, Dueri D. Implementation and Experimental Demonstration of Onboard Powered-Descent Guidance. J Guidance Control Dyn, 2017, 40: 213-229 CrossRef ADS Google Scholar
[9] Liu X F, Lu P, Pan B F. Survey of convex optimization for aerospace applications. Astrodyn, 2017, 1: 23-40 CrossRef Google Scholar
[10] Sponaugle S J, Fernandes S T. Space Shuttle guidance for multiple main engine failures during first stage. J Guidance Control Dyn, 1989, 12: 880-885 CrossRef ADS Google Scholar
[11] Cowling A L. Orbiter trajectory analysis for a two-stage reusable launch vehicle. In: Proceedings of the AIAA International Space Planes & Hypersonic Systems & Technologies Conference, San Francisco, 2011. 1--11. Google Scholar
[12] Lee H, Wei C Z, Cui N G, et al. Integrated Guidance and Control for Reusable Launch Vehicles with Actuator Failures. In: Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 2017. 1-7. Google Scholar
[13] Wang C, Gong Q, Song Z. Autonomous Trajectory Replanning for Launch Vehicles with Propulsion Subsystem Failure. Advances in the Astronautical Sciences, 2018. 165: 1379-1392. Google Scholar
[14] Montenbruck O, Gill E, Lutze F. Satellite Orbits: Models, Methods, and Applications. Appl Mech Rev, 2002, 55: B27 CrossRef ADS Google Scholar
[15] Lv X G, Song Z Y. Guidance methods of long-march launch vehicles. J Astronaut, 2017, 38: 895--902. Google Scholar
Figure 1
(Color online) Autonomous rescue strategy logic diagram
Figure 2
(Color online) Planning of the highest circular orbit
Figure 3
Rescue orbit optimization interval
Figure 4
Optimal rescue flight trajectory in 250 s fault. (a) Semimajor axis;(b) height;(c) velocity;(d) orbital inclination;(e) longitude of ascending node;(f) flight path angle
Figure 5
Optimal rescue flight trajectory in 150 s fault. (a) Semimajor axis;(b) height;(c) velocity;(d) orbital inclination;(e) longitude of ascending node;(f) flight path angle
Figure 6
Optimal rescue flight trajectory in 90 s fault. (a) Semimajor axis;(b) height;(c) velocity;(d) orbital inclination;(e) longitude of ascending node;(f) flight path angle
故障后结合迭代制导和数值积分估计火箭进入原目标轨道需要消耗的燃料${\rm~dm}_r$; |
若${\rm~dm}_r\le~{\rm~dm}_0$, 则根据迭代制导指令继续向原目标轨道飞行, 转第11步(${\rm~Flag}_{\rm~Rescue}=1$); |
若${\rm~dm}_r>{\rm~dm}_0$, 则估计利用迭代制导进入最低安全轨道需要消耗的燃料${\rm~dm}_s$, 若${\rm~dm}_s>{\rm~dm}_0$, 则转第4步, 否则转第5步; |
故障状态下火箭无法将载荷送入最低安全轨道, 转第11步(${\rm~Flag}_{\rm~Rescue}=0$); |
计算当前状态对应的轨道面($i_0$和$\Omega_0$), 并根据式( |
在轨道坐标系下描述以最大轨道高度为目标的凸优化问题Subproblem3; |
利用原始对偶内点法快速求解Subproblem3, 将最优解转换至发射惯性系下, 并作为最优圆救援轨道问题Subproblem4的初始猜测值; |
利用自适应配点算法求解Subproblem4, 若最优圆救援轨道高度大于原目标轨道近地点高度, 转第9步, 否则转第11步(${\rm~Flag}_{\rm~Rescue}=2$); |
根据任务需求选取最优椭圆轨道问题Subproblem5目标函数的权重系数; |
利用自适应配点算法求解Subproblem5, 得到最优椭圆救援轨道(${\rm~Flag}_{\rm~Rescue}=3$); |
流程结束, 返回${\rm~Flag}_{\rm~Rescue}$. |
Symbol | Variable | Value |
$t_s$ | Second stage start time | 0 s |
$m_s$ | Second stage initial mass | 100000 kg |
$m_f$ | Total mass of second stage structure and payload | 22000 kg |
$T_{\rm~ref}$ | Standard thrust amplitude | 700 kN |
$I_{\rm~sp}$ | Engine specific impulse | 350 s |
$\kappa$ | Thrust percentage after dropping | 0.7, 0.75, 0.8 |
$t_0$ | Failure time | $\left\{~{30i\left|~{i~=~1,2,\ldots,7}~\right.}~\right\}$ s |
$R_0$ | Earth radius | 6378140 m |
$\mu$ | Gravitational coefficient of the earth | 3.986$\times10^{14}$ m$^3$/s$^2$ |
$g_0$ | Sea level gravity acceleration | 9.8 m/s$^2$ |
$H_0$ | Second stage initial altitude | 110 km |
$V_0$ | Second stage initial velocity | 2750 m/s |
$h_{\rm~safe}$ | Minimum safe orbit height | 160 km |
Variable | $a$ (m) | $e$ | $i~(^{\circ})$ | $\Omega~(^{\circ})$ | $w$ ($^\circ$) | ${\rm~hp}$ (km) | ${\rm~ha}$ (km) |
Target orbit | 6628140 | $7.54\times10^{-3}$ | 160 | 200.0 | 300.0 | ||
Circular rescue orbit | 6589303 | 0 | 41.58 | 315.33 | – | 211.2 | 211.2 |
IGM orbit | 6582461 | $1.2\times10^{-3}$ | 42.00 | 315.00 | 107.00 | 196.5 | 212.1 |
Elliptical rescue orbit (OPT1) | 6627556 | $7.46\times10^{-3}$ | 41.58 | 315.33 | 173.91 | 200.0 | 298.8 |
Elliptical rescue orbit (OPT2) | 6627081 | $7.39\times10^{-3}$ | 315.11 | 174.05 | 200.0 | 297.9 | |
Elliptical rescue orbit (OPT3) | 6626479 | $7.29\times10^{-3}$ | 42.19 | 174.13 | 200.0 | 296.7 | |
Elliptical rescue orbit (OPT4) | 6625825 | $7.20\times10^{-3}$ | 174.11 | 200.0 | 295.4 |
Variable | $a$ (m) | $e$ | $i~(^\circ)$ | $\Omega~(^\circ$) | $w$ ($^\circ$) | hp (km) | ha (km) |
Target orbit | 6628140 | $7.54\times10^{-3}$ | 42.00 | 315.00 | 160 | 200 | 300 |
IGM orbit | 6409930 | 0.0264 | 42.02 | 315.00 | 351.54 | $-$137.5 | 201.0 |
Circular rescue orbit | 6554274 | 0 | 40.97 | 315.73 | 261.47 | 176.1 | 176.1 |