SCIENTIA SINICA Informationis, Volume 50 , Issue 5 : 766-776(2020) https://doi.org/10.1360/SSI-2019-0121

Strict parity symmetric prolate spheroidal wave functions signal construction and low complexity detection method

More info
  • ReceivedJun 6, 2019
  • AcceptedSep 17, 2019
  • PublishedApr 24, 2020


Funded by


山东省“泰山学者" 建设工程专项经费基金(ts20081130)


[1] Lien S Y, Shieh S L, Huang Y. 5G New Radio: Waveform, Frame Structure, Multiple Access, and Initial Access. IEEE Commun Mag, 2017, 55: 64-71 CrossRef Google Scholar

[2] Cai Y L, Qin Z J, Cui F Y. Modulation and Multiple Access for 5G Networks. IEEE Commun Surv Tutorials, 2018, 20: 629-646 CrossRef Google Scholar

[3] You X J, Zhang C, Tan S X, et al. AI for 5G: research directions and paradigms. Sci Sin Inform, 2018, 48: 1589--1602 [尤小虎, 张川, 谈晓思, 等. 基于 AI 的 5G 技术 - 研究方向与范例. 中国科学: 信息科学, 2018, 48: 1589--1602]. Google Scholar

[4] Shan H G, Zhang Y N, Zhuang W H. User Behavior-Aware Scheduling Based on Time-Frequency Resource Conversion. IEEE Trans Veh Technol, 2017, 66: 8429-8444 CrossRef Google Scholar

[5] Xin C S, Paul P, Song M. On Dynamic Spectrum Allocation in Geo-Location Spectrum Sharing Systems. IEEE Trans Mobile Comput, 2019, 18: 923-933 CrossRef Google Scholar

[6] Zhang L, Liang Y C, Xiao M. Spectrum Sharing for Internet of Things: A Survey. IEEE Wirel Commun, 2019, 26: 132-139 CrossRef Google Scholar

[7] Deng Q Y, Li Z T, Chen J B. Dynamic Spectrum Sharing for Hybrid Access in OFDMA-Based Cognitive Femtocell Networks. IEEE Trans Veh Technol, 2018, 67: 10830-10840 CrossRef Google Scholar

[8] Yang Y, Zhang Q Y, Wang Y, et al. Multi-strategy dynamic spectrum access in cognitive radio networks: Modeling, analysis and optimization. China Commun, 2019, 6: 103--121. Google Scholar

[9] Sharma S K, Bogale T E, Le L B. Dynamic Spectrum Sharing in 5G Wireless Networks With Full-Duplex Technology: Recent Advances and Research Challenges. IEEE Commun Surv Tutorials, 2018, 20: 674-707 CrossRef Google Scholar

[10] Zhou H B, Xu W C, Bi Y G. Toward 5G Spectrum Sharing for Immersive-Experience-Driven Vehicular Communications. IEEE Wirel Commun, 2017, 24: 30-37 CrossRef Google Scholar

[11] Zhang W, Wang C X, Ge X. Enhanced 5G Cognitive Radio Networks Based on Spectrum Sharing and Spectrum Aggregation. IEEE Trans Commun, 2018, 66: 6304-6316 CrossRef Google Scholar

[12] Ibrahim M, Demir A F, Arslan H. Time-Frequency Warped Waveforms. IEEE Commun Lett, 2019, 23: 36-39 CrossRef Google Scholar

[13] Selinis I, Katsaros K, Allayioti M. The Race to 5G Era; LTE and Wi-Fi. IEEE Access, 2018, 6: 56598-56636 CrossRef Google Scholar

[14] Fettweis G, Krondorf M, Bittner S. GFDM - generalized frequency division multiplexing. In: Proceedings of IEEE 69th Vehicular Technology Conference. Barcelona: Springer-VTC, 2009. 1550--2252. Google Scholar

[15] Ozturk E, Basar E, Cirpan H A. Generalized Frequency Division Multiplexing With Flexible Index Modulation Numerology. IEEE Signal Process Lett, 2018, 25: 1480-1484 CrossRef ADS Google Scholar

[16] Farhang-Boroujeny B. OFDM Versus Filter Bank Multicarrier. IEEE Signal Process Mag, 2011, 28: 92-112 CrossRef ADS Google Scholar

[17] Jamal H, Matolak D W. Dual-Polarization FBMC for Improved Performance in Wireless Communication Systems. IEEE Trans Veh Technol, 2019, 68: 349-358 CrossRef Google Scholar

[18] Nissel R, Rupp M. Pruned DFT-Spread FBMC: Low PAPR, Low Latency, High Spectral Efficiency. IEEE Trans Commun, 2018, 66: 4811-4825 CrossRef Google Scholar

[19] Vakilian V, Wild T, Schaich F, et al. Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), Atlanta, 2013. 9--13. Google Scholar

[20] Li Y H, Tian B, Yi K C. A Novel Hybrid CFO Estimation Scheme for UFMC-Based Systems. IEEE Commun Lett, 2017, 21: 1337-1340 CrossRef Google Scholar

[21] Buzzi S, D Andrea C, Li D. MIMO-UFMC Transceiver Schemes for Millimeter-Wave Wireless Communications. IEEE Trans Commun, 2019, 67: 3323-3336 CrossRef Google Scholar

[22] Wang H X, Zhao Z Y, Liu X G, et al. China Patent, ZL2008159238.3, 2011-02-02. Google Scholar

[23] Chen Z N, Wang H X, Liu X G. Maximal capacity nonorthogonal pulse shape modulation. Chin J Aeronautics, 2015, 28: 1699-1708 CrossRef Google Scholar

[24] de Sanctis M, Cianca E, Rossi T. Waveform design solutions for EHF broadband satellite communications. IEEE Commun Mag, 2015, 53: 18-23 CrossRef Google Scholar

[25] Slepian D, Pollak H O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I. Bell Syst Technical J, 1961, 40: 43-63 CrossRef Google Scholar

[26] Wang H X, Lu F P, Liu C H, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal. Journal of Electronics & Information Technology, 2017, 39: 1319--1325. Google Scholar

[27] Mahata K, Hyder M M. Frequency Estimation From Arbitrary Time Samples. IEEE Trans Signal Process, 2016, 64: 5634-5643 CrossRef ADS Google Scholar

[28] Osipov A, Rokhlin V, Xiao H. Prolate Spheroidal Wave Functions of Order Zero. Berlin: Springer, 2013. Google Scholar

[29] Liu C H, Wang H X, Zhang L, et al. A fast convergent algorithm of reconstructing bandpass prolate spheroidal wave function. J Jilin Univ (Eng Tech), 2013, 43: 1091--1097. Google Scholar

[30] Parr B, ByungLok Cho B, Wallace K. A novel ultra-wideband pulse design algorithm. IEEE Commun Lett, 2003, 7: 219-221 CrossRef Google Scholar

[31] Percival D B, Walden A T. Spectral Analysis for Physical Applications. Cambridge: Cambridge University Press, 1993. 378--390. Google Scholar

[32] Beheshti S, Hashemi M, Sejdic E. Mean Square Error Estimation in Thresholding. IEEE Signal Process Lett, 2011, 18: 103-106 CrossRef ADS Google Scholar

[33] Nissel R, Schwarz S, Rupp M. Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications. IEEE J Sel Areas Commun, 2017, 35: 1768-1782 CrossRef Google Scholar