References
[1]
Shi
Y,
Larson
M,
Hanjalic
A.
Collaborative Filtering beyond the User-Item Matrix.
ACM Comput Surv,
2014, 47: 1-45
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collaborative Filtering beyond the User-Item Matrix&author=Shi Y&author=Larson M&author=Hanjalic A&publication_year=2014&journal=ACM Comput Surv&volume=47&pages=1-45
[2]
Linden
G,
Smith
B,
York
J.
Amazon.com recommendations: item-to-item collaborative filtering.
IEEE Internet Comput,
2003, 7: 76-80
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amazon.com recommendations: item-to-item collaborative filtering&author=Linden G&author=Smith B&author=York J&publication_year=2003&journal=IEEE Internet Comput&volume=7&pages=76-80
[3]
Bell
R M,
Koren
Y.
Lessons from the Netflix prize challenge.
SIGKDD Explor Newsl,
2007, 9: 75-79
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lessons from the Netflix prize challenge&author=Bell R M&author=Koren Y&publication_year=2007&journal=SIGKDD Explor Newsl&volume=9&pages=75-79
[4]
Johnson C C. Logistic matrix factorization for implicit feedback data. In: Proceedings of Advances in Neural Information Processing Systems, 2014. 27.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Johnson C C. Logistic matrix factorization for implicit feedback data. In: Proceedings of Advances in Neural Information Processing Systems, 2014. 27&
[5]
Zhang S, Wang W, Ford J, et al. Using singular value decomposition approximation for collaborative filtering. In: Proceedings of the 7th IEEE International Conference on E-Commerce Technology (CEC'05). New York: IEEE, 2005. 257--264.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang S, Wang W, Ford J, et al. Using singular value decomposition approximation for collaborative filtering. In: Proceedings of the 7th IEEE International Conference on E-Commerce Technology (CEC'05). New York: IEEE, 2005. 257--264&
[6]
Paterek A. Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of KDD Cup and Workshop, 2007. 5--8.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Paterek A. Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of KDD Cup and Workshop, 2007. 5--8&
[7]
Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008. 426--434.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008. 426--434&
[8]
Guo G B, Zhang J, Yorke-Smith N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, 2015. 123--129.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo G B, Zhang J, Yorke-Smith N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, 2015. 123--129&
[9]
Tang J L, Hu X, Gao H J, et al. Exploiting local and global social context for recommendation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, 2013. 2712--2718.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang J L, Hu X, Gao H J, et al. Exploiting local and global social context for recommendation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, 2013. 2712--2718&
[10]
Hu
G N,
Dai
X Y,
Qiu
F Y.
Collaborative Filtering with Topic and Social Latent Factors Incorporating Implicit Feedback.
ACM Trans Knowl Discov Data,
2018, 12: 1-30
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collaborative Filtering with Topic and Social Latent Factors Incorporating Implicit Feedback&author=Hu G N&author=Dai X Y&author=Qiu F Y&publication_year=2018&journal=ACM Trans Knowl Discov Data&volume=12&pages=1-30
[11]
Tian Y, Qin Y B, Xu D Y, et al. TrustSVD algorithm based on double trust mechanism. J Front Comput Sci Tech, 2015, 9: 1391--1397.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tian Y, Qin Y B, Xu D Y, et al. TrustSVD algorithm based on double trust mechanism. J Front Comput Sci Tech, 2015, 9: 1391--1397&
[12]
Ruder S. An overview of gradient descent optimization algorithms. 2016,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ruder S. An overview of gradient descent optimization algorithms. 2016,&
[13]
Hu Y F, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining. Washington: IEEE Computer Society, 2008. 8: 263--272.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu Y F, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining. Washington: IEEE Computer Society, 2008. 8: 263--272&
[14]
Gates M, Anzt H, Kurzak J, et al. Accelerating collaborative filtering using concepts from high performance computing. In: Proceedings of 2015 IEEE International Conference on Big Data. New York: IEEE, 2015. 667--676.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gates M, Anzt H, Kurzak J, et al. Accelerating collaborative filtering using concepts from high performance computing. In: Proceedings of 2015 IEEE International Conference on Big Data. New York: IEEE, 2015. 667--676&
[15]
Wang
Z,
Liu
Y,
Chiu
S.
An efficient parallel collaborative filtering algorithm on multi-GPU platform.
J Supercomput,
2016, 72: 2080-2094
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An efficient parallel collaborative filtering algorithm on multi-GPU platform&author=Wang Z&author=Liu Y&author=Chiu S&publication_year=2016&journal=J Supercomput&volume=72&pages=2080-2094
[16]
Kingma D P, Ba J. Adam: A method for stochastic optimization. 2014,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kingma D P, Ba J. Adam: A method for stochastic optimization. 2014,&
[17]
Song E B, Shi Q J, Zhu Y M. Acceleration of block coordinate descent method achieves the $O\left(~{1/{k^2}}~\right)$ rate of convergence for a convex function with block coordinate strong convexity. Sci Sin Math, 2016, 46: 1499--1506.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Song E B, Shi Q J, Zhu Y M. Acceleration of block coordinate descent method achieves the $O\left(~{1/{k^2}}~\right)$ rate of convergence for a convex function with block coordinate strong convexity. Sci Sin Math, 2016, 46: 1499--1506&
[18]
Xu
Y,
Yin
W.
A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion.
SIAM J Imag Sci,
2013, 6: 1758-1789
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion&author=Xu Y&author=Yin W&publication_year=2013&journal=SIAM J Imag Sci&volume=6&pages=1758-1789
[19]
Shi
Q,
Sun
H,
Lu
S.
Inexact Block Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization.
IEEE Trans Signal Process,
2017, 65: 5995-6008
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Inexact Block Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization&author=Shi Q&author=Sun H&author=Lu S&publication_year=2017&journal=IEEE Trans Signal Process&volume=65&pages=5995-6008
[20]
Barnes R J. Matrix differentiation. Springs Journal, 2006: 1-9.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barnes R J. Matrix differentiation. Springs Journal, 2006: 1-9&
[21]
Laue S, Mitterreiter M, Giesen J. Computing higher order derivatives of matrix and tensor expressions. In: Proceedings of Advances in Neural Information Processing Systems, 2018. 2750--2759.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laue S, Mitterreiter M, Giesen J. Computing higher order derivatives of matrix and tensor expressions. In: Proceedings of Advances in Neural Information Processing Systems, 2018. 2750--2759&
[22]
Magnus J R, Neudecker H. Matrix Differential Calculus With Applications in Statistics and Econometrics. Hoboken: John Wiley & Sons, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnus J R, Neudecker H. Matrix Differential Calculus With Applications in Statistics and Econometrics. Hoboken: John Wiley & Sons, 2019&
[23]
Sherman
J,
Morrison
W J.
Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix.
Ann Math Statist,
1950, 21: 124-127
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix&author=Sherman J&author=Morrison W J&publication_year=1950&journal=Ann Math Statist&volume=21&pages=124-127
[24]
Hager
W W.
Updating the Inverse of a Matrix.
SIAM Rev,
1989, 31: 221-239
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Updating the Inverse of a Matrix&author=Hager W W&publication_year=1989&journal=SIAM Rev&volume=31&pages=221-239
[25]
Wang S N, Liu J S, Shroff N. Coded sparse matrix multiplication. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang S N, Liu J S, Shroff N. Coded sparse matrix multiplication. 2018,&
[26]
Bulu?
A,
Gilbert
J R.
Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments.
SIAM J Sci Comput,
2012, 34: C170-C191
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments&author=Bulu? A&author=Gilbert J R&publication_year=2012&journal=SIAM J Sci Comput&volume=34&pages=C170-C191
[27]
Winlaw M, Hynes M B, Caterini A, et al. Algorithmic acceleration of parallel ALS for collaborative filtering: Speeding up distributed big data recommendation in spark. In: Proceedings of the 21st International Conference on Parallel and Distributed Systems (ICPADS). New York: IEEE, 2015. 682--691.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Winlaw M, Hynes M B, Caterini A, et al. Algorithmic acceleration of parallel ALS for collaborative filtering: Speeding up distributed big data recommendation in spark. In: Proceedings of the 21st International Conference on Parallel and Distributed Systems (ICPADS). New York: IEEE, 2015. 682--691&