logo

SCIENTIA SINICA Informationis, Volume 49 , Issue 11 : 1502-1516(2019) https://doi.org/10.1360/SSI-2019-0105

Disturbance-observer-based event-triggered control for multi-agent systems with input saturation

More info
  • ReceivedMay 21, 2019
  • AcceptedAug 26, 2019
  • PublishedNov 13, 2019

Abstract


Funded by

国家杰出青年科学基金(61425009)

国家自然科学基金(61673072)

广东省自然科学基金研究团队项目(2018B030312006)

广州市科技计划项目(201904020006)


References

[1] Jadbabaie A, Jie Lin A, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr, 2003, 48: 988-1001 CrossRef Google Scholar

[2] Ma L, Wang Z, Han Q L. Consensus control of stochastic multi-agent systems: a survey. Sci China Inf Sci, 2017, 60: 120201 CrossRef Google Scholar

[3] Li T, Zhao R, Chen C L P. Finite-Time Formation Control of Under-Actuated Ships Using Nonlinear Sliding Mode Control.. IEEE Trans Cybern, 2018, 48: 3243-3253 CrossRef PubMed Google Scholar

[4] Qian W, Gao Y, Yang Y. Global Consensus of Multiagent Systems With Internal Delays and Communication Delays. IEEE Trans Syst Man Cybern Syst, 2019, 49: 1961-1970 CrossRef Google Scholar

[5] Qian W, Wang L, Chen M Z Q. Local Consensus of Nonlinear Multiagent Systems With Varying Delay Coupling. IEEE Trans Syst Man Cybern Syst, 2018, 48: 2462-2469 CrossRef Google Scholar

[6] Lu Z, Zhang L, Wang L. Controllability analysis of multi-agent systems with switching topology over finite fields. Sci China Inf Sci, 2019, 62: 012201 CrossRef Google Scholar

[7] Xu J, Xu L, Xie L. Decentralized control for linear systems with multiple input channels. Sci China Inf Sci, 2019, 62: 052202 CrossRef Google Scholar

[8] Gao Z Q. On the foundation of active disturbance rejection control. Control Theory Appl, 2013, 30: 1498--1510. Google Scholar

[9] Guo L, Cao S. Anti-disturbance control theory for systems with multiple disturbances: a survey.. ISA Trans, 2014, 53: 846-849 CrossRef PubMed Google Scholar

[10] Chen M, Tao G. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.. IEEE Trans Cybern, 2016, 46: 1851-1862 CrossRef PubMed Google Scholar

[11] Wen-Hua Chen , Ballance D J, Gawthrop P J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron, 2000, 47: 932-938 CrossRef Google Scholar

[12] Sun W, Su S F, Xia J W, et al. Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE Trans Cybern, 2018. doi: 10.1109/TCYB.2018.2884707. Google Scholar

[13] Chen W H, Yang J, Guo L. Disturbance-Observer-Based Control and Related Methods-An Overview. IEEE Trans Ind Electron, 2016, 63: 1083-1095 CrossRef Google Scholar

[14] Liu X Y, Ho D W C, Cao J. Discontinuous Observers Design for Finite-Time Consensus of Multiagent Systems With External Disturbances.. IEEE Trans Neur Netw Learning Syst, 2017, 28: 2826-2830 CrossRef PubMed Google Scholar

[15] Ding Z. Consensus Disturbance Rejection With Disturbance Observers. IEEE Trans Ind Electron, 2015, 62: 5829-5837 CrossRef Google Scholar

[16] Li G, Wang X Y, Li S. Distributed composite output consensus protocols of higher-order multi-agent systems subject to mismatched disturbances. IET Control Theor Appl, 2017, 11: 1162-1172 CrossRef Google Scholar

[17] Hu X, Wei X J, Zhang H F, et al. Robust adaptive tracking control for a class of mechanical systems with unknown disturbances under actuator saturation. Int J Robust Nonlinear Control, 2019, 29: 1893--1908. Google Scholar

[18] Chen M, Shao S Y, Jiang B. Adaptive Neural Control of Uncertain Nonlinear Systems Using Disturbance Observer.. IEEE Trans Cybern, 2017, 47: 3110-3123 CrossRef PubMed Google Scholar

[19] Lin Z. Control design in the presence of actuator saturation: from individual systems to multi-agent systems. Sci China Inf Sci, 2019, 62: 026201 CrossRef Google Scholar

[20] Bai W W, Zhou Q, Li T S, et al. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2921057. Google Scholar

[21] Qin J, Fu W, Zheng W X. On the Bipartite Consensus for Generic Linear Multiagent Systems With Input Saturation.. IEEE Trans Cybern, 2017, 47: 1948-1958 CrossRef PubMed Google Scholar

[22] Su H, Chen M Z Q. Multi-agent containment control with input saturation on switching topologies. IET Control Theor Appl, 2015, 9: 399-409 CrossRef Google Scholar

[23] Wang X, Su H, Chen M Z Q. Observer-Based Robust Coordinated Control of Multiagent Systems With Input Saturation.. IEEE Trans Neur Netw Learning Syst, 2018, 29: 1933-1946 CrossRef PubMed Google Scholar

[24] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed Event-Triggered Control for Multi-Agent Systems. IEEE Trans Automat Contr, 2012, 57: 1291-1297 CrossRef Google Scholar

[25] Cao L, Li H, Zhou Q. Adaptive Intelligent Control for Nonlinear Strict-Feedback Systems With Virtual Control Coefficients and Uncertain Disturbances Based on Event-Triggered Mechanism.. IEEE Trans Cybern, 2018, 48: 3390-3402 CrossRef PubMed Google Scholar

[26] Xing L, Wen C, Liu Z. Event-Triggered Adaptive Control for a Class of Uncertain Nonlinear Systems. IEEE Trans Automat Contr, 2017, 62: 2071-2076 CrossRef Google Scholar

[27] Wang C, Guo L, Qiao J. Event-triggered adaptive fault-tolerant control for nonlinear systems fusing static and dynamic information. J Franklin Institute, 2019, 356: 248-267 CrossRef Google Scholar

[28] Ma H, Li H Y, Liang H J, et al. Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans Fuzzy Syst, 2019. doi: 10.1109/TFUZZ.2019.2896843. Google Scholar

[29] Hu Q L, Shi Y X, Wang C L. Event-based formation coordinated control for multiple spacecraft under communication constraints. IEEE Trans Syst Man Cybern Syst, 2019. doi: 10.1109/TSMC.2019.2919027. Google Scholar

[30] Wang A, Liao X, He H. Event-triggered differentially private average consensus for multi-agent network. IEEE/CAA J Autom Sin, 2019, 6: 75-83 CrossRef Google Scholar

[31] Zou W C, Xiang Z R. Event-triggered containment control of second-order nonlinear multi-agent systems. J Franklin Inst, 2018. doi: 10.1016/j.jfranklin.2018.05.060. Google Scholar

[32] Zhang Y H, Sun J, Liang H J, et al. Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans Cybern, 2018. doi: 10.1109/TCYB.2018.2869084. Google Scholar

[33] Wang W, Wen C, Huang J. Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica, 2017, 77: 133-142 CrossRef Google Scholar

[34] Zhou Q, Wang L, Wu C. Adaptive Fuzzy Control for Nonstrict-Feedback Systems With Input Saturation and Output Constraint. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1-12 CrossRef Google Scholar

[35] Du J, Hu X, Krsti? M. Robust dynamic positioning of ships with disturbances under input saturation. Automatica, 2016, 73: 207-214 CrossRef Google Scholar

[36] Zhou Q, Zhao S Y, Li H Y, et al. Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans Neur Netw Learn Syst, 2018, doi: 10.1109/TNNLS.2018.286937. Google Scholar

[37] Li Y, Li K, Tong S. Finite-Time Adaptive Fuzzy Output Feedback Dynamic Surface Control for MIMO Nonstrict Feedback Systems. IEEE Trans Fuzzy Syst, 2019, 27: 96-110 CrossRef Google Scholar

[38] Yoo S J. Connectivity-Preserving Consensus Tracking of Uncertain Nonlinear Strict-Feedback Multiagent Systems: An Error Transformation Approach.. IEEE Trans Neur Netw Learning Syst, 2018, 29: 4542-4548 CrossRef PubMed Google Scholar

[39] Li Y, Tong S. Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. IEEE Trans Fuzzy Syst, 2018, 26: 1153-1163 CrossRef Google Scholar

[40] Swaroop D, Hedrick J K, Yip P P. Dynamic surface control for a class of nonlinear systems. IEEE Trans Automat Contr, 2000, 45: 1893-1899 CrossRef Google Scholar

[41] Wang C, Guo L. Adaptive cooperative tracking control for a class of nonlinear time-varying multi-agent systems. J Franklin Institute, 2017, 354: 6766-6782 CrossRef Google Scholar

[42] Zhang H, Lewis F L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica, 2012, 48: 1432-1439 CrossRef Google Scholar

[43] Xing L, Wen C, Liu Z. Adaptive compensation for actuator failures with event-triggered input. Automatica, 2017, 85: 129-136 CrossRef Google Scholar