logo

SCIENTIA SINICA Informationis, Volume 49 , Issue 12 : 1606-1625(2019) https://doi.org/10.1360/SSI-2019-0100

A 3D building reconstruction method for SAR images based on deep neural network

More info
  • ReceivedMay 14, 2019
  • AcceptedAug 13, 2019
  • PublishedDec 16, 2019

Abstract


Funded by

国家自然科学基金(61725105)


References

[1] Gamba P, Houshmand B, Saccani M. Detection and extraction of buildings from interferometric SAR data. IEEE Trans Geosci Remote Sens, 2000, 38: 611-617 CrossRef ADS Google Scholar

[2] Bolter R. Reconstruction of man-made objects from high resolution SAR images. In: Proceedings of 2000 IEEE Aerospace Conference, 2000. 287--292. Google Scholar

[3] Zhao L J, Zhou X G, Kuang G Y. Building detection from urban SAR image using building characteristics and contextual information. EURASIP J Adv Signal Process, 2013, 2013(1): 56 CrossRef ADS Google Scholar

[4] Fu X Y, You H J, Fu K. 3-D reconstruction of building from single high-resolution SAR image. J Infrared Millim W, 2012, 31: 569--576 [傅兴玉, 尤红建, 付琨. 单幅高分辨率SAR图像建筑三维模型重构. 红外与毫米波学报, 2012, 31: 569--576. Google Scholar

[5] Xu F, Jin Y Q. Automatic Reconstruction of Building Objects From Multiaspect Meter-Resolution SAR Images. IEEE Trans Geosci Remote Sens, 2007, 45: 2336-2353 CrossRef ADS Google Scholar

[6] Pontes J K, Kong C, Sridharan S, et al. Image2mesh: a learning framework for single image 3D reconstruction. In: Proceedings of Asian Conference on Computer Vision. Berlin: Springer, 2018. 365--381. Google Scholar

[7] Kurenkov A, Ji J, Garg A, et al. Deformnet: Free-form deformation network for 3D shape reconstruction from a single image. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, 2018. 858--866. Google Scholar

[8] Kniaz V V, Remondino F, Knyaz V A. Generative Adversarial Networks for Single Photo 3d Reconstruction. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2019, XLII-2/W9: 403-408 CrossRef ADS Google Scholar

[9] Mandikal P, Murthy N, Agarwal M, et al. 3DLMNet: latent embedding matching for accurate and diverse 3D point cloud reconstruction from a single image. 2018,. arXiv Google Scholar

[10] Fan H Q, Su H, Guibas L J. A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 605--613. Google Scholar

[11] LeCun Y, Boser B, Denker J S. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1989, 1: 541-551 CrossRef Google Scholar

[12] Lecun Y, Bottou L, Bengio Y. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86: 2278-2324 CrossRef Google Scholar

[13] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems. 2012. 1097--1105. Google Scholar

[14] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of European Conference on Computer Vision. Berlin: Springer, 2014. 818--833. Google Scholar

[15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014,. arXiv Google Scholar

[16] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. 770--778. Google Scholar

[17] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. 3431--3440. Google Scholar

[18] Duan Y P, Tao X M, Han C Y, et al. Multi-scale convolutional neural network for SAR image semantic segmentation. In: Proceedings of IEEE Global Communications Conference, 2018. 1--6. Google Scholar

[19] Xu F, Wang H P, Jin Y Q. Deep learning as applied in SAR target recognition and terrain classification. J Radars, 2017, 6(2): 136-148 DOI: 10.12000/JR16130. Google Scholar

[20] Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. 2015,. arXiv Google Scholar

[21] Niu S R, Qiu X L, Peng L X, et al. Parameter prediction method of SARtarget simulation based on convolutional neural networks. In: Proceedings of European Conference on Synthetic Aperture Radar, 2018. 1--5. Google Scholar

[22] Xiang Y, Mottaghi R, Savarese S. Beyond PASCAL: a benchmark for 3D object detection in the wild. In: Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE, 2014. 75--82. Google Scholar

[23] Chang A X, Funkhouser T, Guibas L, et al. Shapenet: an information-rich 3D model repository. 2015,. arXiv Google Scholar

[24] Wu N Z, Song S, Khosla A, et al. 3D ShapeNets: a deep representation for volumetric shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. 1912--1920. Google Scholar

[25] Lim J J, Pirsiavash H, Torralba A. Parsing Ikea objects: fine pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, 2013. Google Scholar

[26] Choy C B, Xu D, Gwak J Y, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Proceedings of European Conference on Computer Vision. Berlin: Springer, 2016. 628--644. Google Scholar

[27] Wang N Y, Zhang Y D, Li Z W, et al. Pixel2Mesh: generating 3D mesh models from single RGB images. In: Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018. 55--71. Google Scholar

qqqq

Contact and support