logo

SCIENTIA SINICA Chimica, Volume 51 , Issue 7 : 876-895(2021) https://doi.org/10.1360/SSC-2021-0031

Graphene nanomesh: basic and applied research

More info
  • ReceivedFeb 3, 2021
  • AcceptedApr 23, 2021
  • PublishedMay 18, 2021

Abstract


Funded by

国家自然科学基金项目(51772110,21874051)

湖北省自然科学基金(2019CFB539)


Interest statement

These authors contributed equally to this work.


References

[1] Allen MJ, Tung VC, Kaner RB. Chem Rev, 2010, 110: 132-145 CrossRef PubMed Google Scholar

[2] Xu PT, Yang JX, Wang KS, Zhou Z, Shen PW. Chin Sci Bull, 2012, 57: 2948-2955 CrossRef ADS Google Scholar

[3] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Solid State Commun, 2008, 146: 351-355 CrossRef ADS arXiv Google Scholar

[4] Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Phys Rev Lett, 2008, 100: 016602 CrossRef PubMed ADS arXiv Google Scholar

[5] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Adv Mater, 2010, 22: 3906-3924 CrossRef PubMed Google Scholar

[6] Sun Y, Wu Q, Shi G. Energy Environ Sci, 2011, 4: 1113-1132 CrossRef Google Scholar

[7] Wu D, Zhang F, Liang H, Feng X. Chem Soc Rev, 2012, 41: 6160-6177 CrossRef PubMed Google Scholar

[8] Xu Y, Chen CY, Zhao Z, Lin Z, Lee C, Xu X, Wang C, Huang Y, Shakir MI, Duan X. Nano Lett, 2015, 15: 4605-4610 CrossRef PubMed ADS Google Scholar

[9] Pedersen TG, Flindt C, Pedersen J, Mortensen NA, Jauho AP, Pedersen K. Phys Rev Lett, 2008, 100: 136804 CrossRef PubMed ADS arXiv Google Scholar

[10] Hu X, Bai D, Wu Y, Chen S, Ma Y, Lu Y, Chao Y, Bai Y. Chem Commun, 2017, 53: 13225-13228 CrossRef PubMed Google Scholar

[11] Panmand RP, Patil P, Sethi Y, Kadam SR, Kulkarni MV, Gosavi SW, Munirathnam NR, Kale BB. Nanoscale, 2017, 9: 4801-4809 CrossRef PubMed Google Scholar

[12] Jiang Z, Pei B, Manthiram A. J Mater Chem A, 2013, 1: 7775-7781 CrossRef Google Scholar

[13] Zhao Y, Hu C, Song L, Wang L, Shi G, Dai L, Qu L. Energy Environ Sci, 2014, 7: 1913-1918 CrossRef Google Scholar

[14] Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X. Nat Commun, 2014, 5: 4554 CrossRef PubMed ADS Google Scholar

[15] He Y, Bai Y, Yang X, Zhang J, Kang L, Xu H, Shi F, Lei Z, Liu ZH. J Power Sources, 2016, 317: 10-18 CrossRef ADS Google Scholar

[16] He Z, Liu J, Wang Q, Zhao M, Wen Z, Chen J, Manoj D, Xie C, Xi J, Yu J, Tang C, Bai Z, Wang S. J Catal, 2019, 377: 199-208 CrossRef Google Scholar

[17] Radich JG, Kamat PV. ACS Nano, 2013, 7: 5546-5557 CrossRef PubMed Google Scholar

[18] Xi J, Zhang Y, Wang Q, Xiao J, Chi K, Duan X, Chen J, Tang C, Sun Y, Xiao F, Wang S. Sens Actuat B-Chem, 2018, 273: 108-117 CrossRef Google Scholar

[19] Xi J, Wang Q, Liu J, Huan L, He Z, Qiu Y, Zhang J, Tang C, Xiao J, Wang S. J Catal, 2018, 359: 233-241 CrossRef Google Scholar

[20] Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X, Hao G, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X. Science, 2017, 356: 599-604 CrossRef PubMed ADS Google Scholar

[21] Zhao X, Hayner CM, Kung MC, Kung HH. ACS Nano, 2011, 5: 8739-8749 CrossRef PubMed Google Scholar

[22] Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y. Nanoscale, 2013, 5: 3457-3464 CrossRef PubMed ADS Google Scholar

[23] Chai Y, Li Z, Wang J, Mo Z, Yang S. J Alloys Compd, 2019, 775: 1206-1212 CrossRef Google Scholar

[24] Jeong JH, Lee GW, Kim YH, Choi YJ, Roh KC, Kim KB. Chem Eng J, 2019, 378: 122126 CrossRef Google Scholar

[25] Wu D, Wang C, Wu H, Wang S, Wang F, Chen Z, Zhao T, Zhang Z, Zhang LY, Li CM. Carbon, 2020, 163: 137-144 CrossRef Google Scholar

[26] Wu D, Niu Y, Wang C, Wu H, Li Q, Chen Z, Xu B, Li H, Zhang LY. J Colloid Interface Sci, 2019, 552: 633-638 CrossRef PubMed ADS Google Scholar

[27] Zhang Z, Tian X, Liu M, Xu P, Xiao F, Wang S. J Mater Chem A, 2018, 6: 23856-23864 CrossRef Google Scholar

[28] Zhang Z, Liu M, Tian X, Xu P, Fu C, Wang S, Liu Y. Nano Energy, 2018, 50: 182-191 CrossRef Google Scholar

[29] Chi K, Chen Z, Xiao F, Guo W, Xi W, Liu J, Yan H, Zhang Z, Xiao J, Liu J, Luo J, Wang S, Loh KP. J Mater Chem A, 2019, 7: 15575-15579 CrossRef Google Scholar

[30] Chen Z, Liu C, Zhao X, Yan H, Li J, Lyu P, Du Y, Xi S, Chi K, Chi X, Xu H, Li X, Fu W, Leng K, Pennycook SJ, Wang S, Loh KP. Adv Mater, 2019, 31: 1804763 CrossRef PubMed Google Scholar

[31] Zeng Z, Huang X, Yin Z, Li H, Chen Y, Li H, Zhang Q, Ma J, Boey F, Zhang H. Adv Mater, 2012, 24: 4138-4142 CrossRef PubMed Google Scholar

[32] Jung I, Jang HY, Moon J, Park S. Nanoscale, 2014, 6: 6482-6486 CrossRef PubMed ADS Google Scholar

[33] Lee JS, Seo DK, Kim T, Kim YH. J Mater Chem C, 2019, 7: 1131-1137 CrossRef Google Scholar

[34] Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, Mahurin SM. Nat Nanotech, 2015, 10: 459-464 CrossRef PubMed ADS Google Scholar

[35] Yang W, Xu X, Hou L, Ma X, Yang F, Wang Y, Li Y. J Mater Chem A, 2017, 5: 5952-5960 CrossRef Google Scholar

[36] Yang DP, Wang X, Guo X, Zhi X, Wang K, Li C, Huang G, Shen G, Mei Y, Cui D. J Phys Chem C, 2014, 118: 725-731 CrossRef Google Scholar

[37] Savaram K, Li M, Tajima K, Takai K, Hayashi T, Hall G, Garfunkel E, Osipov V, He H. Carbon, 2018, 139: 861-871 CrossRef Google Scholar

[38] Patel M, Feng W, Savaram K, Khoshi MR, Huang R, Sun J, Rabie E, Flach C, Mendelsohn R, Garfunkel E, He H. Small, 2015, 11: 3358-3368 CrossRef PubMed Google Scholar

[39] Fox D, O'Neill A, Zhou D, Boese M, Coleman JN, Zhang HZ. Appl Phys Lett, 2011, 98: 243117 CrossRef ADS Google Scholar

[40] Russo CJ, Golovchenko JA. Proc Natl Acad Sci USA, 2012, 109: 5953-5957 CrossRef PubMed ADS Google Scholar

[41] Song B, Schneider ǴF, Xu Q, Pandraud Ǵ, Dekker C, Zandbergen H. Nano Lett, 2011, 11: 2247-2250 CrossRef PubMed ADS arXiv Google Scholar

[42] Bai Y, Yin Y, Xuan Y, Han X. Nanotechnology, 2021, 32: 045602 CrossRef PubMed ADS Google Scholar

[43] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache MV, Paradinas M, Panighel M, Ceballos G, Valenzuela SO, Peña D, Mugarza A. Science, 2018, 360: 199-203 CrossRef PubMed ADS arXiv Google Scholar

[44] Bieri M, Nguyen MT, Gröning O, Cai J, Treier M, Aït-Mansour K, Ruffieux P, Pignedoli CA, Passerone D, Kastler M, Müllen K, Fasel R. J Am Chem Soc, 2010, 132: 16669-16676 CrossRef PubMed Google Scholar

[45] Liu H, Tang Y, Zhao W, Ding W, Xu J, Liang C, Zhang Z, Lin T, Huang F. Adv Mater Interfaces, 2018, 5: 1701261 CrossRef Google Scholar

[46] Wang H, Su L, Yagmurcukardes M, Chen J, Jiang Y, Li Z, Quan A, Peeters FM, Wang C, Geim AK, Hu S. Nano Lett, 2020, 20: 8634-8639 CrossRef PubMed ADS Google Scholar

[47] Ma X, Ning G, Qi C, Xu C, Gao J. ACS Appl Mater Interfaces, 2014, 6: 14415-14422 CrossRef PubMed Google Scholar

[48] Mangadlao JD, de Leon ACC, Felipe MJL, Advincula RC. Chem Commun, 2015, 51: 7629-7632 CrossRef PubMed Google Scholar

[49] Du P, Hu K, Lyu J, Li H, Lin X, Xie G, Liu X, Ito Y, Qiu HJ. Appl Catal B-Environ, 2020, 276: 119172 CrossRef Google Scholar

[50] White DL, Lystrom L, He X, Burkert SC, Kilin DS, Kilina S, Star A. ACS Appl Mater Interfaces, 2020, 12: 36513-36522 CrossRef PubMed Google Scholar

[51] König M, Ruhl G, Batke JM, Lemme MC. Nanoscale, 2016, 8: 15490-15496 CrossRef PubMed Google Scholar

[52] White DL, Burkert SC, Hwang SI, Star A. Nano Lett, 2019, 19: 2824-2831 CrossRef PubMed ADS Google Scholar

[53] Yang F, Fan X, Wang C, Yang W, Hou L, Xu X, Feng A, Dong S, Chen K, Wang Y, Li Y. Carbon, 2017, 121: 443-451 CrossRef Google Scholar

[54] Choi BG, Yang MH, Hong WH, Choi JW, Huh YS. ACS Nano, 2012, 6: 4020-4028 CrossRef PubMed Google Scholar

[55] Xia K, Li Q, Zheng L, You K, Tian X, Han B, Gao Q, Huang Z, Chen G, Zhou C. Microporous Mesoporous Mater, 2017, 237: 228-236 CrossRef Google Scholar

[56] Xu L, Lv W, Shi K, Xiao S, You C, He YB, Kang F, Yang QH. Carbon, 2019, 149: 257-262 CrossRef Google Scholar

[57] Zhu X, Ning G, Ma X, Fan Z, Xu C, Gao J, Xu C, Wei F. J Mater Chem A, 2013, 1: 14023-14030 CrossRef Google Scholar

[58] Luo XF, Yang CH, Chang JK. J Mater Chem A, 2015, 3: 17282-17289 CrossRef Google Scholar

[59] Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J. Nano Lett, 2012, 12: 3783-3787 CrossRef PubMed ADS Google Scholar

[60] Zhao J, Zhang YZ, Zhang F, Liang H, Ming F, Alshareef HN, Gao Z. Adv Energy Mater, 2019, 9: 1803215 CrossRef Google Scholar

[61] Zhang J, Lv W, Tao Y, He YB, Wang DW, You CH, Li B, Kang F, Yang QH. Energy Storage Mater, 2015, 1: 112-118 CrossRef Google Scholar

[62] Li C, Fu Q, Zhao K, Wang Y, Tang H, Li H, Jiang H, Chen L. Carbon, 2018, 139: 1117-1125 CrossRef Google Scholar

[63] Paraknowitsch JP, Thomas A. Energy Environ Sci, 2013, 6: 2839-2855 CrossRef Google Scholar

[64] Yang D, Xu B, Zhao Q, Zhao XS. J Mater Chem A, 2019, 7: 363-371 CrossRef Google Scholar

[65] Li C, Sui XL, Wang ZB, Wang Q, Gu DM. Chem Eng J, 2017, 326: 265-272 CrossRef Google Scholar

[66] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Nat Mater, 2012, 11: 19-29 CrossRef PubMed ADS Google Scholar

[67] Chen K, Sun Z, Fang R, Shi Y, Cheng HM, Li F. Adv Funct Mater, 2018, 28: 1707592 CrossRef Google Scholar

[68] Song J, Yu Z, Gordin ML, Wang D. Nano Lett, 2016, 16: 864-870 CrossRef PubMed ADS Google Scholar

[69] Chang N, Zhou C, Fu H, Zhao Y, Shui J. Adv Mater Interfaces, 2017, 4: 1700783 CrossRef Google Scholar

[70] Wang Y, Adekoya D, Sun J, Tang T, Qiu H, Xu L, Zhang S, Hou Y. Adv Funct Mater, 2018, 29: 1807485 CrossRef Google Scholar

[71] Lin Y, Moitoso B, Martinez-Martinez C, Walsh ED, Lacey SD, Kim JW, Dai L, Hu L, Connell JW. Nano Lett, 2017, 17: 3252-3260 CrossRef PubMed ADS Google Scholar

[72] Cheng F, Chen J. Chem Soc Rev, 2012, 41: 2172-2192 CrossRef PubMed Google Scholar

[73] Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Chem Rev, 2014, 114: 5611-5640 CrossRef PubMed Google Scholar

[74] Zhou W, Zhang H, Nie H, Ma Y, Zhang Y, Zhang H. ACS Appl Mater Interfaces, 2015, 7: 3389-3397 CrossRef PubMed Google Scholar

[75] Nazarian-Samani M, Lim HD, Haghighat-Shishavan S, Kim HK, Ko Y, Kim MS, Lee SW, Kashani-Bozorg SF, Abbasi M, Guim HU, Kim DI, Roh KC, Kang K, Kim KB. J Mater Chem A, 2017, 5: 619-631 CrossRef Google Scholar

[76] Carter R, Oakes L, Cohn AP, Holzgrafe J, Zarick HF, Chatterjee S, Bardhan R, Pint CL. J Phys Chem C, 2014, 118: 20137-20151 CrossRef Google Scholar

[77] Qie L, Lin Y, Connell JW, Xu J, Dai L. Angew Chem Int Ed, 2017, 56: 6970-6974 CrossRef PubMed Google Scholar

[78] Xu S, Das SK, Archer LA. RSC Adv, 2013, 3: 6656-6660 CrossRef ADS Google Scholar

[79] Hu C, Gong L, Xiao Y, Yuan Y, Bedford NM, Xia Z, Ma L, Wu T, Lin Y, Connell JW, Shahbazian-Yassar R, Lu J, Amine K, Dai L. Adv Mater, 2020, 32: 1907436 CrossRef PubMed Google Scholar

[80] Zhao J, Zhang Y‐, Chen J, Zhang W, Yuan D, Chua R, Alshareef HN, Ma Y. Adv Energy Mater, 2020, 10: 2000099 CrossRef Google Scholar

[81] Wang B, Jin F, Xie Y, Luo H, Wang F, Ruan T, Wang D, Zhou Y, Dou S. Energy Storage Mater, 2020, 26: 433-442 CrossRef Google Scholar

[82] Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Science, 2011, 332: 1537-1541 CrossRef PubMed ADS Google Scholar

[83] Walsh ED, Han X, Lacey SD, Kim JW, Connell JW, Hu L, Lin Y. ACS Appl Mater Interfaces, 2016, 8: 29478-29485 CrossRef PubMed Google Scholar

[84] Wang W, Jin J, Wu Y, Zhang W, Jiang H, Li X, Wang G. J Mater Chem A, 2019, 7: 22054-22062 CrossRef Google Scholar

[85] Zhang Y, Ji L, Li W, Zhang Z, Lu L, Zhou L, Liu J, Chen Y, Liu L, Chen W, Zhang Y. J Power Sources, 2016, 334: 104-111 CrossRef ADS Google Scholar

[86] Peng H, Qi S, Miao Q, Zhao R, Xu Y, Ma G, Lei Z. J Power Sources, 2021, 482: 228993 CrossRef ADS Google Scholar

[87] Dong X, Hu N, Wei L, Su Y, Wei H, Yao L, Li X, Zhang Y. J Mater Chem A, 2016, 4: 9739-9743 CrossRef Google Scholar

[88] Kotal M, Kim H, Roy S, Oh IK. J Mater Chem A, 2017, 5: 17253-17266 CrossRef Google Scholar

[89] Fan Z, Zhu J, Sun X, Cheng Z, Liu Y, Wang Y. ACS Appl Mater Interfaces, 2017, 9: 21763-21772 CrossRef PubMed Google Scholar

[90] Chang JH, Hung YH, Luo XF, Huang CH, Jung S, Chang JK, Kong J, Su CY. RSC Adv, 2016, 6: 8384-8394 CrossRef ADS Google Scholar

[91] Guo C, Zhang Y, Zeng T, Huang D, Wan Q, Yang N. Carbon, 2020, 157: 298-307 CrossRef Google Scholar

[92] Chi K, Zhang X, Tian X, Zhang Z, Wu Z, Xiao F, Wang S. ChemElectroChem, 2020, 7: 406-413 CrossRef Google Scholar

[93] Wu S, Hui KS, Hui KN, Yun JM, Kim KH. Chem Eng J, 2017, 317: 461-470 CrossRef Google Scholar

[94] Jiang Z, Shi Y, Jiang ZJ, Tian X, Luo L, Chen W. J Mater Chem A, 2014, 2: 6494-6503 CrossRef Google Scholar

[95] Ge L, Wang D, Yang P, Xu H, Xiao L, Zhang GX, Lu X, Duan Z, Meng F, Zhang J, An M. Nanoscale, 2019, 11: 17010-17017 CrossRef PubMed Google Scholar

[96] Lv R, Wang H, Yu H, Peng F. Electrochim Acta, 2017, 228: 203-213 CrossRef Google Scholar

[97] Fang Y, Wang T, Miao R, Tang L, Wang X. Electrochim Acta, 2010, 55: 2404-2408 CrossRef Google Scholar

[98] Bian Y, Wang H, Hu J, Liu B, Liu D, Dai L. Carbon, 2020, 162: 66-73 CrossRef Google Scholar

[99] Haryanto A, Fernando S, Murali N, Adhikari S. Energy Fuels, 2005, 19: 2098-2106 CrossRef Google Scholar

[100] Kumatani A, Miura C, Kuramochi H, Ohto T, Wakisaka M, Nagata Y, Ida H, Takahashi Y, Hu K, Jeong S, Fujita JI, Matsue T, Ito Y. Adv Sci, 2019, 6: 1900119 CrossRef PubMed Google Scholar

[101] Ito Y, Ohto T, Hojo D, Wakisaka M, Nagata Y, Chen L, Hu K, Izumi M, Fujita J, Adschiri T. ACS Catal, 2018, 8: 3579-3586 CrossRef Google Scholar

  • Figure 1

    Schematic diagram of synthesis methods and applications of graphene nanomesh in energy storage and conversion (color online).

  • Figure 2

    Preparation of graphene nanomesh by H2O2. (a) Schematic illustration of the fabrication of the NHG; (b) photograph of NHG hydrogels and aqueous dispersion; (c) dark-field scanning transmission electron microscopy (DF-STEM) image of NHG; (d) transmission electron microscopy (TEM) image of NHG [16]; (e) TEM images of graphene sheets with tailored pores obtained by etching in H2O2 for 0, 0.5, 1.0, and 2.0 h, respectively [20] (color online).

  • Figure 3

    Preparation of graphene nanomesh by HNO3. (a) Schematic diagram of reduced holey graphene oxide paper prepared by HNO3 treatment; SEM images of holey graphene oxide sheets deposited on Si wafers: (b) the volume ratio of GO suspension/70% HNO3 is 1:5; (c) the volume ratio of GO suspension/70% HNO3 is 1:7.5; (d) the volume ratio of GO suspension/70% HNO3 is 1:10, and (e) the volume ratio of GO suspension/70% HNO3 is 1:12.5. Scale bar is 20 μm [21] (color online).

  • Figure 4

    Preparation of graphene nanomesh by metal oxides. (a, d, g) TEM images of the H-NiO/GMA, H-Co3O4/GMA and H-FeOx/GMA (inset: the corresponding SAED patterns, left inset of (a): the photograph of a 3D H-NiO/GMA); (b, e, h) TEM images of the GMA after acid-leaching H-NiO, H-Co3O4 and H-FeOx NPs (inset: the corresponding particle size distribution histograms); (c, f, i) high-resolution TEM images of the H-NiO/GMA, H-Co3O4/GMA and H-FeOx/GMA (inset: the corresponding FFT patterns) [27] (color online).

  • Figure 5

    Preparation of graphene nanomesh flims by metal oxides. (a–c) Photographs of the free-standing GMF transferred to a PET substrate, showing: (a) flat, (b) folded bending, and (c) winding states and SEM images (scale bar, 200 nm) of the cross section of the free-standing GMF; (d) scanning TEM (scale bar, 200 nm); (e) TEM (scale bar, 100 nm), and (f) HRTEM images (scale bar, 20 nm) of an individual sheet within the GMF. The inset in (d) and (f) is the corresponding pore size distribution and the HRTEM image (scale bar, 5 nm) of a single nanohole [28] (color online).

  • Figure 6

    In-situ TEM study of the formation of VNGNMAs. SEM (a, b) and TEM (c) images of VNGNMAs; (d) schematic of the setup of the in-situ heating stage with a gas cell in the TEM holder; (e–h) images show the formation processes of hollow graphene wall pores, scale bar: 20 nm [29]. The growth of Pt nanosheets within vertically-grown graphene arrays: (i) schematic of the interface-confined reaction in the 3D hierarchically porous catalyst; (j) digital photo of as-prepared Pt-in-VGCC; (k, l) SEM images of Pt-in-VGCC at different magnifications. Scale bars: (k) 20 µm; (l) 1 µm [30] (color online).

  • Figure 7

    Preparation of graphene nanomesh by a physical etching method. (a) Schematic diagram of HG synthesis by ultraviolet/ozone solution oxidation method; TEM images of HGO at different reaction times: (b) 2 h, (c) 2.5 h, (d) 3 h, and (e) 4 h; and pore size distribution of nanopores in HGO for (f) 2 h, (g) 2.5 h, (h) 3 h, and (i) 4 h [10] (color online).

  • Figure 8

    Preparation of graphene nanomesh by organic molecular synthesis. Schematic illustrations of the fabrication of N/Cl-PG and the lithium-ion insertion/extraction process in N/Cl-PG [45] (color online).

  • Figure 9

    Preparation of graphene nanomesh by template-oriented method. (a) Highly ordered pyrolytic graphite (HOPG) synthesized by covalent organic compounds (COF-5) as a template. Schematic diagram of HG and graphene nanoparticle compounds confined in the pore; (b) SEM image of the HOPG flake after RIE-COF-5 templated etching under optimized conditions (scale bar 200 nm); (c) TEM image of the exfoliated HG sheets (scale bar 50 nm); (d) HRTEM image of the HG copper nanoparticle composite utilizing optimized growth conditions (2 mg mL−1 copper(II) chloride dihydrate) [50]; (e) TEM image of the product PNG2 when the mass ratio of the prepared template (NH4)3PO4 and MgO is 2:1 [47] (color online).

  • Figure 10

    H-TMO/GMAS in lithium ion batteries. (a) CV curves of the H-NiO/GMA at a scan rate of 0.1 mV s−1; (b) discharge/charge profiles of the H-NiO/GMA at a current density of 0.2 A g−1; (c) cycling performance at 0.2 A g−1 and (d) rate performance of the H-NiO/GMA, NiO/GA and pure NiO; (e) cycling performance of the H-NiO/GMA at 5 A g−1 [27] (color online).

  • Figure 11

    HRGO300 in sodium-ion batteries. (a) CV curves of HRGO300 at a scan rate of 0.1 mV s−1; (b) constant current charge-discharge curves HRGO300 at a current density of 0.1 A g−1; (c) rate performances of HRGO300 and RGO300 at different current densities; (d) cycle performances of HRGO300 at 0.1 A g−1; (e) cycle performance of HRGO300 at 2 A g−1 [60] (color online).

  • Figure 12

    Applications of Fe and N co-doped holey graphene in lithium–sulfur batteries. (a) Part of Fe–N4 and Fe–N2 structures on graphene (the image shows the binding energy of Li2S and selected bond distance; (b) rate performances of RGO–S, NRGO–S and HFeNG–S electrodes at different current densities; (c) long cycle performance and corresponding coulombic efficiency of RGO–S, NRGO–S and HFeNG–S electrodes at a current density of 0.5 C [70] (color online).

  • Figure 13

    Applications of ultra-thin free-standing graphene nanomesh films (GMF) in supercapacitors. (a) Galvanostatic charge and discharge curves of GMFECs-200 at varying current densities; (b) capacitance-frequency diagrams of GFEC and GMFEC; (c) cyclic stability of GMFECs-200 at 1 mA cm−2; (d) GMFECs-200 and the previously selected graphene-based thin-film EC with solid-electrolyte Ragone diagram [28] (color online).

  • Figure 14

    NVGMs applied to asymmetric supercapacitors. (a) CV curves of CC@NVGMs@MnO2 and CC@NVGMs@PPy electrodes at a scan rate of 50 mV s−1; (b) GCD curves of the NVGMs-ASCs; (c) volumetric capacitance versus current density of the CC-ASC and NVGMs-ASC; (d) cycling performances of the NVGMs-ASC device at a current density of 2 A cm−2; inset: the photograph of a bent device [92] (color online).

  • Figure 15

    Applications of the high-edge pyridine N-doped graphene nanomesh (N-hG) in electrocatalytic ORR. (a) CV curves of N-rGO and N-hG6 in N2- and O2-saturated 0.1 M KOH; (b) LSV curves (scan rate of 10 mV s−1) for N-hG6 and reference samples in 0.1 M KOH for ORR; (c) K-L plots at the applied potentials of 0.5, 0.55, 0.6 and 0.65 V, respectively. Inset shows the corresponding LSV curves for N-hG6 at different rotating rates (from top to down: 400, 625, 900, 1225 and 1600 rpm); (d) mass-corrected Tafel plots obtained from K-L equation; (e) transferred electron number and H2O2 yield for N-hG6 obtained from RRDE curves (inset); (f) time-dependent durability test and MeOH poisoning experiments (inset) measured on N-hG6 and Pt/C for 10000 and 1000 s, respectively [98] (color online).

  • Figure 16

    Applications of vertically aligned N-doped graphene nanogrid arrays (VNGNMAs) loaded with Pd and Pt single atoms in electrocatalytic hydrogen precipitation reactions. (a) HER polarization curves and (b) Tafel plots of Pd1SAC-VNGNMAs, Pt1SAC-VNGNMAs, Pt/C, Pt1SAC-VNGNMA powder and carbon cloth; (c) mass activity at −0.05 V (vs. RHE) of the Pt1SAC-VNGNMAs, Pt1SAC-VNGNMA powders, Pd1SAC-VNGNMA and Pt/C catalysts for the HER; (d) scan rate dependence of the current densities of Pt1SAC-VNGNMAs and Pt1SAC-VNGNMA powders at 0.11 V vs. RHE; (e) long-term stability of Pt1SAC-VNGNMAs; inset is the digital photo of Pt1SAC-VNGNMAs; (f) CV curves of Pt1SAC-VNGNMAs, Pt1SAC-VNGNMA powders, and Pt/C in 0.5 M H2SO4 solution containing 50 mM H2O2 [29]; (g) comparison in the mass activity of Pt-in-VGCC and 10% Pt/C; (h) stability of Pt-in-VGCC on glycerol oxidation [30] (color online).

  • Table 1   The pore size, surface area and conductivity of graphene nanomesh prepared by different methods

    材料

    制备方法

    孔径大小 (nm)

    BET (m2 g−1)

    孔隙面密度 (孔 cm−2)

    导电率 (S m−1)

    参考文献

    多孔石墨烯

    H2O2刻蚀

    1

    830

    1000

    [14]

    N掺杂多孔石墨烯

    H2O2刻蚀

    2~4

    322.1

    [16]

    Nb2O5纳米颗粒多孔石墨烯复合材料

    H2O2刻蚀

    1.5~2.7

    63~83

    [20]

    N掺杂多孔石墨烯

    HNO3刻蚀

    2~5

    784

    [22]

    MnO2多孔石墨烯复合材料

    HNO3刻蚀

    1

    134.8

    [23]

    多孔石墨烯

    KOH刻蚀

    1~5

    2255

    [55]

    多孔石墨烯

    KOH刻蚀

    1~5

    2300

    96

    [56]

    石墨烯纳米筛薄膜

    金属氧化物刻蚀

    16

    1.2×1011

    27800~35400

    [28]

    多孔石墨烯

    O2等离子体刻蚀

    0.5~1

    1012

    0.04

    [34]

    N掺杂多孔石墨烯

    N2等离子体刻蚀

    2~9

    1874

    3100

    [35]

    多孔石墨烯

    紫外光刻蚀

    3~4

    386

    [10]

    多孔石墨烯

    微波刻蚀

    300~500

    744

    [37]

    多孔石墨烯

    聚焦光束刻蚀

    0.64

    5.1×1011

    [40]

    多孔石墨烯

    有机分子合成

    1

    1012

    [46]

    N/Cl共掺杂多孔石墨烯

    有机分子合成

    292

    [45]

  • Table 2   Properties of graphene nanomesh composites in lithium-ion, sodium-ion and lithium-sulfur batteries

    材料

    BET (m2 g–1)

    倍率 (mAh g–1)

    循环稳定性 (mAh g–1)

    参考文献

    锂离子电池

     

    中空Co3O4原位多孔石墨烯复合材料

    130.1

    631 (10.0 A g−1)

    1015 (250圈, 0.2 A g−1)

    [25]

    γ-Fe2O3多孔还原石墨烯复合材料

    563.2

    530 (2.0 A g−1)

    1141 (230圈, 0.5 A g−1)

    [26]

    N/Cl共掺杂多孔石墨烯

    292

    456 (5.0 A g−1)

    461 (1800圈, 5.0 A g−1)

    [45]

    中空NiO石墨烯纳米筛复合材料

    848.4

    574 (10.0 A g−1)

    767 (1000圈, 5.0 A g−1)

    [27]

    Co3O4纳米颗粒石墨烯筛复合材料

    1075 (1.0 A g−1)

    873 (50圈, 1.0 A g−1)

    [57]

    钠离子电池

     

    多孔还原氧化石墨烯

    156

    131 (10.0 A g−1)

    163 (3000圈, 2.0 A g−1)

    [60]

    镍钴矿N掺杂多孔石墨烯复合材料

    310 (5.0 A g−1)

    510 (100圈, 0.1 A g−1)

    [64]

    O/N共掺杂多孔石墨烯凝胶

    260

    189 (10.0 A g−1)

    179 (2000圈, 5.0 A g−1)

    [80]

    锂硫电池

     

    氧官能化的多孔石墨烯/硫复合材料

    754

    472 (3 C)

    429 (300圈, 0.2 C)

    [69]

    Fe/N共掺杂多孔石墨烯

    370.5

    810 (5 C)

    1154 (300圈, 0.5 C)

    [70]

    中空LiFePO4微球多孔石墨烯复合材料

    183.1

    748 (5 C)

    831 (500圈, 1 C)

    [81]

  • Table 3   Properties of graphene nanomesh composites in supercapacitors

    材料

    BET (m2 g−1)

    比电容 (F g−1)

    体积电容 (F cm−3)

    循环稳定性

    倍率

    电解质

    参考文献

    N掺杂多孔石墨烯

    1602

    250 (0.5 A g−1)

    397 (0.5 A g−1)

    95.7% (10000圈, 10.0 A g−1)

    6 M KOH

    [87]

    多孔石墨烯/PPy膜复合材料

    312

    438 (1.0 A g−1)

    416 (1.0 A g−1)

    82.4% (2000圈, 1.0 A g−1)

    74% (20.0 A g−1)

    6 M KOH

    [89]

    多孔还原氧化石墨烯薄膜

    142.82

    101 (5.0 A g−1)

    98% (5000圈, 10.0 A g−1)

    1 M Na2SO4+[Fe(CN)6]3−/4−

    [91]

    多孔石墨烯/聚吡咯水凝胶

    278

    418 (0.5 A g−1)

    74% (2000圈, –)

    80% (20.0 A g−1)

    1 M KOH

    [15]

    碳球多孔石墨烯复合材料

    288.19

    207 (1.0 A g−1)

    79% (5000圈, 1.0 A g−1)

    81.9% (15.0 A g−1)

    1 M TEABF4

    [93]

    多孔石墨烯

    2518

    226 (0.5 A g−1)

    97% (1000圈, 5.0 A g−1)

    80.1% (10.0 A g−1)

    6 M KOH

    [55]

    3D自组装多孔石墨烯

    564

    442 (2 A g−1)

    95% (1600圈, –)

    76% (20.0 A g−1)

    6 M KOH

    [90]

    多孔垂直石墨烯纳米筛阵列沉积MnO2和PPy

    50.9

    4.27(1.0 mA cm−2)

    84.6% (5000圈, 2.0 mA cm−2)

    70.7% (20.0 mA cm−2)

    PVP/LiCl

    [92]

qqqq

Contact and support