logo

SCIENTIA SINICA Chimica, Volume 51 , Issue 7 : 844-861(2021) https://doi.org/10.1360/SSC-2020-0229

Biological and environmental degradation of metal-organic frameworks and related mechanisms

More info
  • ReceivedDec 18, 2020
  • AcceptedFeb 10, 2021
  • PublishedMay 18, 2021

Abstract


Funded by

国家自然科学基金(41907332)

山东省“泰山学者”计划(tsqn201909051)


References

[1] Jiang HL, Xu Q. Chem Commun, 2011, 47: 3351-3370 CrossRef Google Scholar

[2] Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T. Chem Soc Rev, 2017, 46: 3108-3133 CrossRef Google Scholar

[3] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM. Science, 2002, 295: 469-472 CrossRef ADS Google Scholar

[4] Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Acc Chem Res, 2010, 43: 58-67 CrossRef Google Scholar

[5] Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Nat Mater, 2010, 9: 172-178 CrossRef ADS Google Scholar

[6] Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou HC. J Am Chem Soc, 2007, 129: 1858-1859 CrossRef Google Scholar

[7] Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. J Am Chem Soc, 2008, 130: 13850-13851 CrossRef Google Scholar

[8] Gao BX. Preparation of Porous CPLs-based Metal-Organic Frameworks and Their Application in Gas Adsorption. Dissertation for Master’s Degree. Hangzhou: Zhejiang University, 2018 (in Chinese) [高碧轩. 柱撑型金属——有机框架材料的制备及其气体吸附分离性能研究. 硕士学位论文. 杭州: 浙江大学, 2018]. Google Scholar

[9] Sun CY, Qin C, Wang XL, Su ZM. Expert Opin Drug Deliver, 2013, 10: 89-101 CrossRef Google Scholar

[10] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444 CrossRef Google Scholar

[11] Chen G, Yu B, Lu C, Zhang H, Shen Y, Cong H. CrystEngComm, 2018, 20: 7486-7491 CrossRef Google Scholar

[12] Wu MX, Yang YW. Adv Mater, 2017, 29: 1606134 CrossRef Google Scholar

[13] Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Drug Metab Rev, 2019, 51: 356-377 CrossRef Google Scholar

[14] Zeng JY, Wang XS, Song WF, Cheng H, Zhang XZ. Adv Therap, 2019, 2: 1800100 CrossRef Google Scholar

[15] Beg S, Rahman M, Jain A, Saini S, Midoux P, Pichon C, Ahmad FJ, Akhter S. Drug Discovery Today, 2017, 22: 625-637 CrossRef Google Scholar

[16] Fu M, Tang W, Liu JJ, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. J Drug Target, 2020, 28: 245-258 CrossRef Google Scholar

[17] Nguyen TL, Choi Y, Kim J. Adv Mater, 2019, 31: 1803953 CrossRef Google Scholar

[18] Yao Y, Chen Y, Liu Y, Zhu Y, Liu Y, Zhang S. Langmuir, 2019, 35: 5871-5877 CrossRef Google Scholar

[19] Barve A, Jain A, Liu H, Zhao Z, Cheng K. Acta Biomater, 2020, 113: 501-511 CrossRef Google Scholar

[20] Ma B, Sheng J, Wang P, Jiang Z, Borrathybay E. Int J Nanomed, 2019, 14: 4541-4558 CrossRef Google Scholar

[21] Wang Y, Stang J, Yu M, Tsvetkov M, Wu CC, Qin X, Chung E, Moghaddam M, Wu W. Adv Mater Technol, 2016, 1: 1600038 CrossRef Google Scholar

[22] Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas AH, Eddaoudi M. J Am Chem Soc, 2015, 137: 13308-13318 CrossRef Google Scholar

[23] Pascanu V, González Miera G, Inge AK, Martín-Matute B. J Am Chem Soc, 2019, 141: 7223-7234 CrossRef Google Scholar

[24] Kumar P, Deep A, Kim KH. TrAC Trends Anal Chem, 2015, 73: 39-53 CrossRef Google Scholar

[25] Anstoetz M, Rose TJ, Clark MW, Yee LH, Raymond CA, Vancov T. PLoS ONE, 2015, 10: e0144169 CrossRef ADS Google Scholar

[26] Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto MJ, Horcajada P. J Mater Chem B, 2014, 2: 262-271 CrossRef Google Scholar

[27] Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X. J Am Chem Soc, 2016, 138: 962-968 CrossRef Google Scholar

[28] Luzuriaga MA, Benjamin CE, Gaertner MW, Lee H, Herbert FC, Mallick S, Gassensmith JJ. Supramol Chem, 2019, 31: 485-490 CrossRef Google Scholar

[29] Miao Y, Zhao X, Qiu Y, Liu Z, Yang W, Jia X. ACS Appl Bio Mater, 2019, 2: 895-905 CrossRef Google Scholar

[30] Tan LL, Song N, Zhang SXA, Li H, Wang B, Yang YW. J Mater Chem B, 2016, 4: 135-140 CrossRef Google Scholar

[31] Tan LL, Li H, Zhou Y, Zhang Y, Feng X, Wang B, Yang YW. Small, 2015, 11: 3807-3813 CrossRef Google Scholar

[32] Zhang H, Zhao M, Yang Y, Lin YS. Microporous Mesoporous Mater, 2019, 288: 109568 CrossRef Google Scholar

[33] Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR. J Am Chem Soc, 2009, 131: 15834-15842 CrossRef Google Scholar

[34] Gross AF, Sherman E, Vajo JJ. Dalton Trans, 2012, 41: 5458-5460 CrossRef Google Scholar

[35] James JB, Lin YS. J Membrane Sci, 2017, 532: 9-19 CrossRef Google Scholar

[36] Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Adv Drug Deliver Rev, 2013, 65: 1316-1330 CrossRef Google Scholar

[37] McKinlay AC, Morris RE, Horcajada P, Férey G, Gref R, Couvreur P, Serre C. Angew Chem Int Ed, 2010, 49: 6260-6266 CrossRef Google Scholar

[38] Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y. Biomaterials, 2019, 230: 119619 CrossRef Google Scholar

[39] Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X. ACS Appl Mater Interfaces, 2020, 12: 22581-22592 CrossRef Google Scholar

[40] Su F, Jia Q, Li Z, Wang M, He L, Peng D, Song Y, Zhang Z, Fang S. Microporous Mesoporous Mater, 2019, 275: 152-162 CrossRef Google Scholar

[41] Tian Z, Yao X, Ma K, Niu X, Grothe J, Xu Q, Liu L, Kaskel S, Zhu Y. ACS Omega, 2017, 2: 1249-1258 CrossRef Google Scholar

[42] Vahed TA, Naimi-Jamal MR, Panahi L. J Drug Deliver Sci Tech, 2019, 49: 570-576 CrossRef Google Scholar

[43] Shu F, Lv D, Song XL, Huang B, Wang C, Yu Y, Zhao SC. RSC Adv, 2018, 8: 6581-6589 CrossRef ADS Google Scholar

[44] Pan QS, Chen TT, Nie CP, Yi JT, Liu C, Hu YL, Chu X. ACS Appl Mater Interfaces, 2018, 10: 33070-33077 CrossRef Google Scholar

[45] Wang H, Li T, Li J, Tong W, Gao C. Colloids Surf A Physicochem Eng Asp, 2019: 224–230. Google Scholar

[46] Ke F, Yuan YP, Qiu LG, Shen YH, Xie AJ, Zhu JF, Tian XY, Zhang LD. J Mater Chem, 2011, 21: 3843-3848 CrossRef Google Scholar

[47] Chen Y, Li P, Modica JA, Drout RJ, Farha OK. J Am Chem Soc, 2018, 140: 5678-5681 CrossRef Google Scholar

[48] Cunha D, Ben Yahia M, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C. Chem Mater, 2013, 25: 2767-2776 CrossRef Google Scholar

[49] Li X, Lachmanski L, Safi S, Sene S, Serre C, Grenèche JM, Zhang J, Gref R. Sci Rep, 2017, 7: 13142 CrossRef ADS Google Scholar

[50] Bellido E, Guillevic M, Hidalgo T, Santander-Ortega MJ, Serre C, Horcajada P. Langmuir, 2014, 30: 5911-5920 CrossRef Google Scholar

[51] Rojas S, Carmona FJ , Maldonado CR, Barea E, Navarro JA. New J Chem, 2016, 40: 690–5694. Google Scholar

[52] Rodriguez-Ruiz V, Maksimenko A, Anand R, Monti S, Agostoni V, Couvreur P, Lampropoulou M, Yannakopoulou K, Gref R. J Drug Targeting, 2015, 23: 759-767 CrossRef Google Scholar

[53] Bhattacharjee A, Gumma S, Purkait MK. Microporous Mesoporous Mater, 2018, 259: 203-210 CrossRef Google Scholar

[54] Velásquez-Hernández MJ, Ricco R, Carraro F, Limpoco FT, Linares-Moreau M, Leitner E, Wiltsche H, Rattenberger J, Schröttner H, Frühwirt P, Stadler EM, Gescheidt G, Amenitsch H, Doonan CJ, Falcaro P. CrystEngComm, 2019, 21: 4538-4544 CrossRef Google Scholar

[55] Li YA, Zhao XD, Yin HP, Chen GJ, Yang S, Dong YB. Chem Commun, 2016, 52: 14113-14116 CrossRef Google Scholar

[56] Zhao HX, Zou Q, Sun SK, Yu C, Zhang X, Li RJ, Fu YY. Chem Sci, 2016, 7: 5294-5301 CrossRef Google Scholar

[57] Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S. Chem Commun, 2018, 54: 5377-5380 CrossRef Google Scholar

[58] Yang XX, Feng P, Cao J, Liu W, Tang Y. ACS Appl Mater Interfaces, 2020, 12: 13613-13621 CrossRef Google Scholar

[59] Zhou W, Wang L, Li F, Zhang W, Huang W, Huo F, Xu H. Adv Funct Mater, 2017, 27: 1605465 CrossRef Google Scholar

[60] Zhao J, Yang Y, Han X, Liang C, Liu J, Song X, Ge Z, Liu Z. ACS Appl Mater Interfaces, 2017, 9: 23555-23563 CrossRef Google Scholar

[61] Wang XG, Dong ZY, Cheng H, Wan SS, Chen WH, Zou MZ, Huo JW, Deng HX, Zhang XZ. Nanoscale, 2015, 7: 16061-16070 CrossRef ADS Google Scholar

[62] Shen H, Liu J, Lei J, Ju H. Chem Commun, 2018, 54: 9155-9158 CrossRef Google Scholar

[63] Lu J, Stewart AJ, Sadler PJ, Pinheiro TJT, Blindauer CA. Biochem Soc Trans, 2008, 36: 1317-1321 CrossRef Google Scholar

[64] Peng Q, Liu J, Zhang T, Zhang TX, Zhang CL, Mu H. Biomacromolecules, 2019, 20: 1789-1797 CrossRef Google Scholar

[65] Stefaniak KR, Epley CC, Novak JJ, McAndrew ML, Cornell HD, Zhu J, McDaniel DK, Davis JL, Allen IC, Morris AJ, Grove TZ. Chem Commun, 2018, 54: 7617-7620 CrossRef Google Scholar

[66] He L, Pang K, Liu W, Tian Y, Chang L, Liu X, Zhao M, Liu Y, Li Y, Jiang X, Song R, Liu Y. J Mater Chem B, 2019, 7: 1050-1055 CrossRef Google Scholar

[67] Song Z, Wu Y, Cao Q, Wang H, Wang X, Han H. Adv Funct Mater, 2018, 28: 1800011 CrossRef Google Scholar

[68] Wang Z, Tang X, Wang X, Yang D, Yang C, Lou Y, Chen J, He N. Chem Commun, 2016, 52: 12210-12213 CrossRef Google Scholar

[69] Collet G, Lathion T, Besnard C, Piguet C, Petoud S. J Am Chem Soc, 2018, 140: 10820-10828 CrossRef Google Scholar

[70] Brown JM, Wilson WR. Nat Rev Cancer, 2004, 4: 437-447 CrossRef Google Scholar

[71] Sun C, Yue L, Cheng Q, Wang Z, Wang R. ACS Mater Lett, 2020, 2: 266-271 CrossRef Google Scholar

[72] Prabhu VV, Elangovan P, Niranjali Devaraj S, Sakthivel KM. Gene, 2018, 679: 352-359 CrossRef Google Scholar

[73] Zheng C, Wang Y, Phua SZF, Lim WQ, Zhao Y. ACS Biomater Sci Eng, 2017, 3: 2223-2229 CrossRef Google Scholar

[74] Ranji-Burachaloo H, Karimi F, Xie K, Fu Q, Gurr PA, Dunstan DE, Qiao GG. ACS Appl Mater Interfaces, 2017, 9: 33599-33608 CrossRef Google Scholar

[75] Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtar ML, Li Y. Biomater Sci, 2019, 7: 3683-3692 CrossRef Google Scholar

[76] Ma X, Ren X, Guo X, Fu C, Wu Q, Tan L, Li H, Zhang W, Chen X, Zhong H, Meng X. Biomaterials, 2019, 214: 119223 CrossRef Google Scholar

[77] Adhikari C, Chakraborty A. ChemPhysChem, 2016, 17: 1070-1077 CrossRef Google Scholar

[78] Zhu X, Gu J, Wang Y, Li B, Li Y, Zhao W, Shi J. Chem Commun, 2014, 50: 8779-8782 CrossRef Google Scholar

[79] Cheng C, Li C, Zhu X, Han W, Li J, Lv Y. J Biomater Appl, 2019, 33: 1373-1381 CrossRef Google Scholar

[80] Ye K, Wang L, Song H, Li X, Niu X. J Mater Chem B, 2019, 7: 4794-4800 CrossRef Google Scholar

[81] Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X. Anal Chim Acta, 2020, 1121: 26-34 CrossRef Google Scholar

[82] Zhang H, Zhao M, Lin YS. Microporous Mesoporous Mater, 2018, 279: 201-210 CrossRef Google Scholar

[83] Xia H, Zhong X, Li Z, Jiang Y. J Colloid Interface Sci, 2018, 533: 1–8. Google Scholar

[84] Xia X, Li W, Li S. J Nanopart Res, 2019, 21: 39 CrossRef ADS Google Scholar

[85] Al-Janabi N, Alfutimie A, Siperstein FR, Fan X. Front Chem Sci Eng, 2016, 10: 103-107 CrossRef Google Scholar

[86] Zuluaga S, Fuentes-Fernandez EMA, Tan K, Xu F, Li J, Chabal YJ, Thonhauser T. J Mater Chem A, 2016, 4: 5176-5183 CrossRef Google Scholar

[87] Guo P, Dutta D, Wong-Foy AG, Gidley DW, Matzger AJ. J Am Chem Soc, 2015, 137: 2651-2657 CrossRef Google Scholar

[88] Cychosz KA, Matzger AJ. Langmuir, 2010, 26: 17198-17202 CrossRef Google Scholar

[89] Taheri M, Enge TG, Tsuzuki T. Mater Today Chem, 2020, 16: 100231 CrossRef Google Scholar

[90] Bellarosa L, Calero S, López N. Phys Chem Chem Phys, 2012, 14: 7240-7245 CrossRef ADS Google Scholar

[91] Li YL, Chi HY, Kan MY, Pao SY, Kang YH, Chen JJ, Kang DY. ChemNanoMat, 2017, 3: 902-908 CrossRef Google Scholar

[92] Leus K, Bogaerts T, De Decker J, Depauw H, Hendrickx K, Vrielinck H, Van Speybroeck V, Van Der Voort P. Microporous Mesoporous Mater, 2016, 226: 110-116 CrossRef Google Scholar

[93] Zhong X, Xia H, Huang W, Li Z, Jiang Y. Chem Eng J, 2020, 381: 122758 CrossRef Google Scholar

[94] Bhattacharyya S, Han R, Kim WG, Chiang Y, Jayachandrababu KC, Hungerford JT, Dutzer MR, Ma C, Walton KS, Sholl DS, Nair S. Chem Mater, 2018, 30: 4089-4101 CrossRef Google Scholar

[95] Mounfield III WP, Han C, Pang SH, Tumuluri U, Jiao Y, Bhattacharyya S, Dutzer MR, Nair S, Wu Z, Lively RP, Sholl DS, Walton KS. J Phys Chem C, 2016, 120: 27230-27240 CrossRef Google Scholar

[96] Gaikwad S, Kim SJ, Han S. Microporous Mesoporous Mater, 2019, 277: 253-260 CrossRef Google Scholar

[97] Khramenkova EV, Polynski MV, Vinogradov AV, Pidko EA. Phys Chem Chem Phys, 2018, 20: 20785-20795 CrossRef ADS Google Scholar

[98] Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K, Yu G. Environ Sci Technol, 2016, 50: 3634-3640 CrossRef ADS Google Scholar

[99] Bezverkhyy I, Weber G, Bellat JP. Microporous Mesoporous Mater, 2016, 219: 117-124 CrossRef Google Scholar

[100] Yin H, Kim H, Choi J, Yip ACK. Chem Eng J, 2015, 278: 293-300 CrossRef Google Scholar

[101] Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Microporous Mesoporous Mater, 2009, 120: 325-330 CrossRef Google Scholar

[102] Wu K, Du C, Ma F, Shen Y, Liang D, Zhou J. Polymers, 2019, 11: 947 CrossRef Google Scholar

[103] Anstoetz M, Sharma N, Clark M, Yee LH. J Mater Sci, 2016, 51: 9239-9252 CrossRef ADS Google Scholar

[104] Qian X, Yadian B, Wu R, Long Y, Zhou K, Zhu B, Huang Y. Int J Hydrogen Energy, 2013, 38: 16710-16715 CrossRef Google Scholar

[105] Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC. Angew Chem Int Ed, 2012, 51: 10307-10310 CrossRef Google Scholar

[106] Furukawa H, Gándara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM. J Am Chem Soc, 2014, 136: 4369-4381 CrossRef Google Scholar

[107] Duan J, Jin W, Kitagawa S. Coord Chem Rev, 2017, 332: 48-74 CrossRef Google Scholar

[108] Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC. Adv Mater, 2018, 30: 1704303 CrossRef Google Scholar

[109] Yuan S, Qin JS, Xu HQ, Su J, Rossi D, Chen Y, Zhang L, Lollar C, Wang Q, Jiang HL, Son DH, Xu H, Huang Z, Zou X, Zhou HC. ACS Cent Sci, 2018, 4: 105-111 CrossRef Google Scholar

[110] Yuan S, Peng J, Zhang Y, Shao-Horn Y. J Phys Chem C, 2019, 123: 28266-28274 CrossRef Google Scholar

[111] Øien-Ødegaard S, Bouchevreau B, Hylland K, Wu L, Blom R, Grande C, Olsbye U, Tilset M, Lillerud KP. Inorg Chem, 2016, 55: 1986-1991 CrossRef Google Scholar

[112] Zhao DS. Chem Ind Eng Prog, 2020 (in Chinese) [赵东升. 化工进展, 2020, 9: 1–17]. Google Scholar

[113] Tai S, Zhang W, Zhang J, Luo G, Jia Y, Deng M, Ling Y. Microporous Mesoporous Mater, 2016, 220: 148-154 CrossRef Google Scholar

[114] Ding M, Cai X, Jiang HL. Chem Sci, 2019, 10: 10209-10230 CrossRef Google Scholar

[115] Khudozhitkov AE, Arzumanov SS, Gabrienko AA, Kolokolov DI, Stepanov AG. Phys Chem Chem Phys, 2020, 22: 18695-18702 CrossRef ADS Google Scholar

[116] Zhang J, Cai Y, Liu K. Ind Eng Chem Res, 2019, 58: 4199-4207 CrossRef Google Scholar

[117] Brozek CK, Dincă M. J Am Chem Soc, 2013, 135: 12886-12891 CrossRef Google Scholar

[118] DeCoste JB, Peterson GW, Jasuja H, Glover TG, Huang Y, Walton KS. J Mater Chem A, 2013, 1: 5642-5650 CrossRef Google Scholar

[119] Yang C, Kaipa U, Mather QZ, Wang X, Nesterov V, Venero AF, Omary MA. J Am Chem Soc, 2011, 133: 18094-18097 CrossRef Google Scholar

[120] Ma D, Li Y, Li Z. Chem Commun, 2011, 47: 7377-7379 CrossRef Google Scholar

[121] Zhang W, Hu Y, Ge J, Jiang HL, Yu SH. J Am Chem Soc, 2014, 136: 16978-16981 CrossRef Google Scholar

[122] Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Chem Soc Rev, 2014, 43: 5594-5617 CrossRef Google Scholar

[123] Satyanarayana T, Johri BN, Prakash A. Microorganisms in Environmental Management: Microbes and Environment. Heidelberg: Springer, 2012. 451–476. Google Scholar

[124] Martin G, Guggiari M, Bravo D, Zopfi J, Cailleau G, Aragno M, Job D, Verrecchia E, Junier P. Environ Microbiol, 2012, 14: 2960-2970 CrossRef Google Scholar

[125] Garvie LAJ. Am Miner, 2003, 88: 1879-1888 CrossRef ADS Google Scholar

[126] Cailleau G, Braissant O, Verrecchia EP. Naturwissenschaften, 2004, 91: 191-194 CrossRef ADS Google Scholar

[127] Cailleau G, Braissant O, Verrecchia EP. Biogeosciences, 2011, 8: 1755-1767 CrossRef ADS Google Scholar

[128] Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ. Proc Natl Acad Sci USA, 2003, 100: 3701-3706 CrossRef ADS Google Scholar

[129] Parsekar SU, Velankanni P, Sridhar S, Haldar P, Mate NA, Banerjee A, Sudhadevi Antharjanam PK, Koley AP, Kumar M. Dalton Trans, 2020, 49: 2947-2965 CrossRef Google Scholar

[130] Li R, Di Z, Chen G. Chin J Anal Chem, 2002, 5: 44–47 (in Chinese) [李蓉, 邸泽梅, 陈国亮. 分析化学, 2002, 5: 44–47]. Google Scholar

[131] Dai X, Cao Y, Shi X, Wang X. RSC Adv, 2016, 6: 71461-71471 CrossRef ADS Google Scholar

[132] James JB, Lin YS. J Phys Chem C, 2016, 120: 14015-14026 CrossRef Google Scholar

  • Figure 1

    The structure and application of typical MOFs. The inner layer of this schematic diagram lists the MOFs with typical structural characteristics, and the outer layer lists representative applications of MOFs (color online).

  • Figure 2

    The degradation of MOFs in vivo. MOFs could carry drug molecules into the body through (I) oral and (II) intravenous injection. Through oral route, MOFs will enter the digestive system of organisms (①). In the digestive system, H+, ions and digestive enzymes will act on MOFs and degrade them into dissolved metal ions and organic ligands. Whereas through intravenous route, MOFs will come into blood (②), and H+, PO43−, glutathione, H2O2 and serum proteins in the blood will destroy the structure of MOFs. Finally, MOFs will enter the cell (③), and are degraded under these physiological conditions (color online).

  • Figure 3

    The degradation mechanisms of MOFs. Degradation of MOFs under A acid-base environments, B redox substances, C ions, D water, E soil microorganisms, F proteins (or enzymes), and G light and heat, respectively (color online).

  • Table 1   Influencing factors and degradation mechanisms of MOFs in human body

    诱导因素

    MOF种类

    反应条件

    作用时间

    降解结果及机理

    参考文献

    pH

    ZIF-8

    pH (1.5~8.0)

    8 h~15 days

    H+作用于Zn2+和咪唑盐间配位键, 生成Zn2+和2-甲基咪唑, 导致ZIF-8降解

    [27,42~45,73]

    MIL-100

    pH (2.0~7.4)

    8 h

    H+使MIL-100中金属溶解产生Fe3+, 8 h内MIL-100降解85%

    [39]

    NH2-MIL-88B(Fe)

    pH (5.0/7.4)

    8 h

    H+作用于Fe3+与羧酸盐的配位键, Fe3+8 h内释放量为1 mg/L

    [74]

    NH2-MIL-101(Fe)

    pH (5.4/6.2/7.4)

    18 h

    H+导致Fe3+释放, 18 h内释放量550 μM

    [75]

    MIL-101(Fe)

    pH (5.5/7.4)

    10 h

    TEM观察到MIL-101(Fe)出现明显的结构变化

    [76]

    Fe-BTC和Zn-BTC

    pH (4.0)

    72 h

    破坏羧酸基团与金属的配位键, 导致MOF降解

    [77]

    UiO-66

    pH (5.5/7.4)

    60 h

    质子化减弱了UiO-66中Al和Zr–O间相互作用

    [78]

    UiO-66

    pH (4.0~7.4)

    41 days

    DOX和Zr位点上质子化羟基配位键的断裂

    [56]

    离子

    MIL-100(Fe)

    PBS (11.9 mM)

    6 h

    PO43−作用于Fe金属核心, 6 h配体释放率约34%

    [49]

    MIL-100(Fe)

    KH2PO4 (100 mM)

    24 h

    PO43−攻击金属位点, 24 h内配体释放率约29.9%

    [50]

    MIL-100

    PBS (9.5 mM)

    8 h

    4 h内配体释放60%, MIL-100在4 h后结晶度损失

    [52]

    MIL-101(Fe)

    PBS (pH 7.4)

    10 h

    TEM观察到MIL-101(Fe)的晶体边缘出现侵蚀区

    [20]

    NU-1000

    PBS (pH 7.0)

    60 min

    有机连接配体释放率约11%

    [47]

    UiO-66

    PBS (pH 7.4)

    24 h

    XRD证实UiO-66中新的ZrO2衍射峰出现

    [40]

    ZIF-8

    PBS (pH 7.4)

    24 h

    PO43−与Zn2+竞争结合破坏ZIF-8结构导致其降解

    [79]

    UiO-66-NH2

    Ca2+ (1-600 mM)

    160 min

    5-氟尿嘧啶释放率为80%

    [30]

    UiO-66-NH2

    Zn2+ (10 mM)

    90 min

    5-氟尿嘧啶释放率为75%

    [31]

    氧化还原物质、蛋白质/酶

    MIL-100 (Fe)

    H2O2 (0.5 μM 50 μM)

    50 h

    H2O2引发Fe3+和配体之间的配位断裂导致MIL-100降解

    [29]

    Mn-SS

    GSH (10 mM)

    24 h

    GSH引发配体二硫代二乙醇酸中二硫键断裂, 导致降解

    [60]

    GOx-ZIF-8

    葡萄糖 (0~15 mM)

    2 h/24 h

    GOx催化葡萄糖生成葡萄糖酸, 降低局部pH, 导致ZIF-8降解

    [57,58]

    MIL-101

    GSH (0.2 mM)

    140 h

    GSH导致二硫键的断裂破坏MIL-101结构

    [61]

    ZIF-8

    血清白蛋白

    24 h

    白蛋白竞争ZIF-8中金属锌, 导致ZIF-8晶体形态发生变化

    [28]

    MIL-53(Fe)

    碱性磷酸酶

    60 min

    产生的羟基自由基(·OH)氧化MIL-53中对苯二甲酸

    [80]

    Zr-MOF

    磷酸化蛋白

    30 min

    蛋白上的磷酸基与MOF中的Zr金属发生络合作用

    [81]

    其他影响因素

    UiO-AZB

    紫外光(340 nm)

    12 h

    UiO-AZB纳米载体在光照射下降解

    [65]

    Au@ZIF-8

    可见光(514 nm)

    Au利用其光热特性热分解DOX分子与ZIF-8骨架之间的强化学作用

    [66]

    O-NBA@ZIF-8

    紫外光(365 nm)

    150 min

    ZIF-8结晶度逐渐溶解, 释放Zn2+

    [67]

    CuS@ZIF-8

    近红外光(980 nm)

    3 min

    ZIF-8受热不均匀分解成小片段

    [68]

    CD-MOF-161

    紫外光(<300 nm)

    80 min

    晶体表面被侵蚀, 破坏了结构完整性, 导致晶体破裂

    [69]

    NCs

    低氧

    偶氮-NCs之间连接键被破坏

    [71]

    –表示未标注反应时间

  • Table 2   Degradation of MOFs as affected by environmental factors and related degradation mechanismsa)

    诱导因素

    MOF种类

    反应条件

    作用时间

    降解结果及机理

    参考文献

    ZIF-8

    去离子水(pH 6.5)

    24 h

    红外光谱证实ZIF-8水解过程中部分Zn–N键发生断裂

    [32]

    ZIF-8

    去离子水

    24 h

    SEM观察到新的叶状结晶物质生成

    [82]

    Cu-BTC

    去离子水

    24 h

    有机配体与金属位点发生水解形成新的晶体结构

    [84]

    IRMOF-1

    模拟水分子

    IRMOF-1发生晶格破裂

    [90]

    MOF-177

    去离子水

    3 months

    MOF-177分解形成金属盐

    [88]

    HKUST-1

    去离子水

    24 h

    HKUST-1分解形成金属盐

    [33]

    Zn4O类

    潮湿空气

    43 h

    MOF损失了99.5%的框架毛孔

    [86]

    酸性物质

    MIL/UiO/ZIF-8/Cu-BTC

    HCl (pH 0, pH 4.0)

    3 d/60 d

    XRD观察到新衍射峰

    [92]

    ZIFs类

    CO2和SO2

    10 d

    除ZIF-71外, ZIFs均转变为无孔相

    [94]

    MIL-125

    水和SO2

    原位红外观察到亚硫酸盐生成, 且MIL-125表面积减小

    [95]

    MIL-101

    SO2

    2 d

    形成硫酸盐物质

    [96]

    氧化还原物质

    MIL/UiO/ZIF-8/Cu-BTC

    H2O2 (5 wt%)

    60 d

    多数MOFs出现了新的衍射峰

    [92]

    Mn-BTC

    O2和H2O2

    Mn2+被氧化成热力学更稳定的Mn4+, Mn-BTC中配位键断裂

    [97]

    光热

    MIL-53

    350~450 nm

    100 h

    MOF生成活性氧导致降解

    [98]

    MIL/UiO/ZIF-8/Cu-BTC

    200℃

    5 h

    Cu-BTC结构遭到破坏, 孔隙度丧失, UiO-67结构破坏

    [92]

    ZIF-8

    300℃

    24 h

    ZIF-8样品中XRD衍射峰消失, 出现氧化锌的衍射峰

    [100]

    ZIF-8

    50~300℃

    24 h

    ZIF-8在热诱导作用下发生碳化, 碳化强度随温度升高逐渐增加

    [35]

    HKUST-1

    300℃

    2 h

    XRD衍射峰消失, 表面损失严重

    [101]

    MIL-53

    400℃

    5 h

    MIL-53结构发生坍塌

    [104]

    微生物

    MOF

    土壤微生物

    6 months

    有机连接配体草酸被细菌矿化导致MOF降解了50.9%

    [102]

    OPA-MOF

    土壤微生物

    22 weeks

    有机连接配体草酸被细菌矿化导致MOF分解

    [103]

    OPA-MOF

    土壤微生物

    有机连接配体草酸被细菌矿化导致MOF结构坍塌

    [25]

    –表示未提到作用时间

qqqq

Contact and support