logo

SCIENTIA SINICA Chimica, Volume 51 , Issue 3 : 337-358(2021) https://doi.org/10.1360/SSC-2020-0205

Research advances of scanning electrochemical microscopy in biomedical field

More info
  • ReceivedOct 22, 2020
  • AcceptedNov 17, 2020
  • PublishedDec 10, 2020

Abstract


Funded by

国家自然科学基金(21775117)

陕西自然科学基础研究计划(2020JC-06)

中央高校基本科研业务费(PY3A081,xjh012019044)


References

[1] Şahin B, İlgün G. Health Soc Care Community, 2020, : doi:10.1111/hsc.13156 CrossRef PubMed Google Scholar

[2] Hassanpour SH, Dehghani M. J Cancer Res Practice, 2017, 4: 127-129 CrossRef Google Scholar

[3] Deuschl G, Beghi E, Fazekas F, Varga T, Christoforidi KA, Sipido E, Bassetti CL, Vos T, Feigin VL. Lancet Public Health, 2020, 5: e551-e567 CrossRef Google Scholar

[4] Lee C, Kwak J, Bard AJ. Proc Natl Acad Sci USA, 1990, 87: 1740-1743 CrossRef PubMed ADS Google Scholar

[5] Shao YH. Chin J Analyt Chem, 1999, 27: 3–5 (in Chinese) [邵元华. 分析化学, 1999, 27: 3–5]. Google Scholar

[6] Hirano Y, Kowata K, Kodama M, Komatsu Y. Bioelectrochemistry, 2013, 92: 1-5 CrossRef PubMed Google Scholar

[7] Noyhouzer T, L'Homme C, Beaulieu I, Mazurkiewicz S, Kuss S, Kraatz HB, Canesi S, Mauzeroll J. Langmuir, 2016, 32: 4169-4178 CrossRef PubMed Google Scholar

[8] Kuss S, Polcari D, Geissler M, Brassard D, Mauzeroll J. Proc Natl Acad Sci USA, 2013, 110: 9249-9254 CrossRef PubMed ADS Google Scholar

[9] Koley D, Bard AJ. Proc Natl Acad Sci USA, 2012, 109: 11522-11527 CrossRef PubMed ADS Google Scholar

[10] Roberts WS, Davis F, Holmes JL, Collyer SD, Larcombe LD, Morgan SL, Higson SPJ. Biosens Bioelectron, 2013, 41: 282-288 CrossRef PubMed Google Scholar

[11] Chang CY, Takahashi Y, Murata T, Shiku H, Chang HC, Matsue T. Lab Chip, 2009, 9: 1185-1192 CrossRef PubMed Google Scholar

[12] Arai T, Nishijo T, Matsumae Y, Zhou Y, Ino K, Shiku H, Matsue T. Anal Chem, 2013, 85: 9647-9654 CrossRef PubMed Google Scholar

[13] Obregon R, Horiguchi Y, Arai T, Abe S, Zhou Y, Takahashi R, Hisada A, Ino K, Shiku H, Matsue T. Talanta, 2012, 94: 30-35 CrossRef PubMed Google Scholar

[14] Kuss S, Cornut R, Beaulieu I, Mezour MA, Annabi B, Mauzeroll J. Bioelectrochemistry, 2011, 82: 29-37 CrossRef PubMed Google Scholar

[15] Zhang MMN, Long YT, Ding Z. J InOrg Biochem, 2012, 108: 115-122 CrossRef PubMed Google Scholar

[16] Li Y, Hu K, Yu Y, Rotenberg SA, Amatore C, Mirkin MV. J Am Chem Soc, 2017, 139: 13055-13062 CrossRef PubMed Google Scholar

[17] Vasanthan KS, Sethuraman S, Parthasarathy M. Anal Chim Acta, 2015, 890: 83-90 CrossRef PubMed Google Scholar

[18] Kwak J, Bard AJ. Anal Chem, 1989, 61: 1221-1227 CrossRef Google Scholar

[19] Bard AJ, Fan FRF, Pierce DT, Unwin PR, Wipf DO, Zhou F. Science, 1991, 254: 68-74 CrossRef PubMed ADS Google Scholar

[20] Salamifar SE, Lai RY. Anal Chem, 2013, 85: 9417-9421 CrossRef PubMed Google Scholar

[21] Hirano Y, Kodama M, Shibuya M, Maki Y, Komatsu Y. Anal Biochem, 2014, 447: 39-42 CrossRef PubMed Google Scholar

[22] Okumura S, Hirano Y, Maki Y, Komatsu Y. Analyst, 2018, 143: 4083-4089 CrossRef PubMed ADS Google Scholar

[23] Lee Y, Ding Z, Bard AJ. Anal Chem, 2002, 74: 3634-3643 CrossRef PubMed Google Scholar

[24] Kranz C, Kueng A, Lugstein A, Bertagnolli E, Mizaikoff B. Ultramicroscopy, 2004, 100: 127-134 CrossRef PubMed Google Scholar

[25] Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T. J Am Chem Soc, 2010, 132: 10118-10126 CrossRef PubMed Google Scholar

[26] Chai X, Zhou X, Zhu A, Zhang L, Qin Y, Shi G, Tian Y. Angew Chem Int Ed, 2013, 52: 8129-8133 CrossRef PubMed Google Scholar

[27] Su B. Handbook of Analytical Chemistry. Part 4 Electroanalytical Chemistry. Beijing: Chemical Industry Press, 2016 (in Chinese) [苏彬. 分析化学手册.第四分册 电化学分析. 北京: 化学工业出版社, 2016]. Google Scholar

[28] Santos CS, Kowaltowski AJ, Bertotti M. Sci Rep, 2017, 7: 11428 CrossRef PubMed ADS Google Scholar

[29] Soldà A, Valenti G, Marcaccio M, Giorgio M, Pelicci PG, Paolucci F, Rapino S. ACS Sens, 2017, 2: 1310-1318 CrossRef PubMed Google Scholar

[30] Li Y, Ning X, Ma Q, Qin D, Lu X. TrAC Trends Anal Chem, 2016, 80: 242-254 CrossRef Google Scholar

[31] Liu Y, Liu X, Guo Z, Hu Z, Xue Z, Lu X. Biosens Bioelectron, 2017, 87: 101-107 CrossRef PubMed Google Scholar

[32] Ren QQ, Wu J, Zhang WC, Wang C, Qin X, Liu GC, Li ZX, Yu Y. Sens Actuat B-Chem, 2017, 245: 615-621 CrossRef Google Scholar

[33] Shen M, Colombo ML. Anal Methods, 2015, 7: 7095-7105 CrossRef PubMed Google Scholar

[34] Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Angew Chem Int Ed, 2015, 54: 9313-9318 CrossRef PubMed Google Scholar

[35] Polcari D, Dauphin-Ducharme P, Mauzeroll J. Chem Rev, 2016, 116: 13234-13278 CrossRef PubMed Google Scholar

[36] Lugo-Morales LZ, Loziuk PL, Corder AK, Toups JV, Roberts JG, McCaffrey KA, Sombers LA. Anal Chem, 2013, 85: 8780-8786 CrossRef PubMed Google Scholar

[37] Du F, Huang W, Shi Y, Wang Z, Cheng J. Biosens Bioelectron, 2008, 24: 415-421 CrossRef PubMed Google Scholar

[38] Chen Y, Su B, Shao YH. Chem J Chin U, 2003, 24: 1834–1837 (in Chinese) [陈勇, 苏彬, 邵元华. 高等学校化学学报, 2003, 24: 1834–1837]. Google Scholar

[39] Welle TM, Alanis K, Colombo ML, Sweedler JV, Shen M. Chem Sci, 2018, 9: 4937-4941 CrossRef PubMed Google Scholar

[40] Page A, Kang M, Armitstead A, Perry D, Unwin PR. Anal Chem, 2017, 89: 3021-3028 CrossRef PubMed Google Scholar

[41] Şen M, Takahashi Y, Matsumae Y, Horiguchi Y, Kumatani A, Ino K, Shiku H, Matsue T. Anal Chem, 2015, 87: 3484-3489 CrossRef PubMed Google Scholar

[42] Phillips CG, Stone HA. J Electroanal Chem, 1995, 396: 277-283 CrossRef Google Scholar

[43] Wang CL, Creasy KE, Shaw BR. J Electroanal Chem Interfacial Electrochem, 1991, 300: 365-375 CrossRef Google Scholar

[44] Lin Y, Wang K, Xu Y, Li L, Luo J, Wang C. Biosens Bioelectron, 2016, 78: 274-280 CrossRef PubMed Google Scholar

[45] Pan R, Xu M, Burgess JD, Jiang D, Chen HY. Proc Natl Acad Sci USA, 2018, 115: 4087-4092 CrossRef PubMed Google Scholar

[46] Pan R, Xu M, Jiang D, Burgess JD, Chen HY. Proc Natl Acad Sci USA, 2016, 113: 11436-11440 CrossRef PubMed Google Scholar

[47] Lee Y, Amemiya S, Bard AJ. Anal Chem, 2001, 73: 2261-2267 CrossRef PubMed Google Scholar

[48] Zoski CG. Curr Opin Electrochem, 2017, 1: 46-52 CrossRef Google Scholar

[49] Takahashi Y, Kumatani A, Shiku H, Matsue T. Anal Chem, 2017, 89: 342-357 CrossRef PubMed Google Scholar

[50] Ino K, Şen M, Shiku H, Matsue T. Analyst, 2017, 142: 4343-4354 CrossRef PubMed ADS Google Scholar

[51] Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV. Proc Natl Acad Sci USA, 2008, 105: 443-448 CrossRef PubMed ADS Google Scholar

[52] Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R. J Am Chem Soc, 2018, 140: 7764-7768 CrossRef PubMed Google Scholar

[53] Ding Z, Quinn BM, Bard AJ. J Phys Chem B, 2001, 105: 6367-6374 CrossRef Google Scholar

[54] Bard AJ, Fan FRF, Kwak J, Lev O. Anal Chem, 1989, 61: 132-138 CrossRef Google Scholar

[55] Rapino S, Marcu R, Bigi A, Soldà A, Marcaccio M, Paolucci F, Pelicci PG, Giorgio M. Electrochim Acta, 2015, 179: 65-73 CrossRef Google Scholar

[56] Eckhard K, Chen X, Turcu F, Schuhmann W. Phys Chem Chem Phys, 2006, 8: 5359-5365 CrossRef PubMed ADS Google Scholar

[57] Nebel M, Grützke S, Diab N, Schulte A, Schuhmann W. Faraday Discuss, 2013, 164: 19-32 CrossRef PubMed ADS Google Scholar

[58] Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, Shiku H, Gorelik J, Klenerman D, Korchev YE, Matsue T. Proc Natl Acad Sci USA, 2012, 109: 11540-11545 CrossRef PubMed ADS Google Scholar

[59] Ning X, Wu T, Xiong Q, Zhang F, He PG. Anal Chem, 2020, 92: 12111-12115 CrossRef PubMed Google Scholar

[60] Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Angew Chem Int Ed, 2014, 53: 12456-12460 CrossRef PubMed Google Scholar

[61] Shin M, Wang Y, Borgus JR, Venton BJ. Annu Rev Anal Chem, 2019, 12: 297-321 CrossRef PubMed ADS Google Scholar

[62] Xu M, Pan R, Zhu Y, Jiang D, Chen HY. Anal Chem, 2018, 90: 10117-10121 CrossRef PubMed Google Scholar

[63] Tan XL, Wang MH, Dong YF, Shao YH. Chin J Appl Chem, 2018, 35: 1107–1112 (in Chinese) [覃晓丽, 王茗涵, 董逸帆, 邵元华. 应用化学, 2018, 35: 1107–1112]. Google Scholar

[64] Li Y, Lang J, Ye Z, Wang M, Yang Y, Guo X, Zhuang J, Zhang J, Xu F, Li F. Anal Chem, 2020, 92: 4771-4779 CrossRef PubMed Google Scholar

[65] Zheng XT, Li CM. Chem Soc Rev, 2012, 41: 2061-2071 CrossRef PubMed Google Scholar

[66] Petroniene J, Morkvenaite‐Vilkonciene I, Miksiunas R, Bironaite D, Ramanaviciene A, Mikoliunaite L, Kisieliute A, Rucinskas K, Janusauskas V, Plikusiene I, Labeit S, Ramanavicius A. Electroanalysis, 2020, 32: 1337-1345 CrossRef Google Scholar

[67] Petroniene J, Morkvenaite-Vilkonciene I, Miksiunas R, Bironaite D, Ramanaviciene A, Rucinskas K, Janusauskas V, Ramanavicius A. Electrochim Acta, 2020, 360: 136956 CrossRef Google Scholar

[68] Bard AJ, Li X, Zhan W. Biosens Bioelectron, 2006, 22: 461-472 CrossRef PubMed Google Scholar

[69] Bartolini L, Malferrari M, Lugli F, Zerbetto F, Paolucci F, Pelicci PG, Albonetti C, Rapino S. ChemElectroChem, 2018, 5: 2975-2981 CrossRef Google Scholar

[70] Ummadi JG, Joshi VS, Gupta PR, Indra AK, Koley D. Anal Methods, 2015, 7: 8826-8831 CrossRef PubMed Google Scholar

[71] Şen M, Ino K, Shiku H, Matsue T. Biotechnol Bioeng, 2012, 109: 2163-2167 CrossRef PubMed Google Scholar

[72] Kuss S, Trinh D, Mauzeroll J. Anal Chem, 2015, 87: 8102-8106 CrossRef PubMed Google Scholar

[73] Polcari D, Hernández-Castro JA, Li K, Geissler M, Mauzeroll J. Anal Chem, 2017, 89: 8988-8994 CrossRef PubMed Google Scholar

[74] Li MSM, Filice FP, Ding Z. J Inorg Biochem, 2014, 136: 177-183 CrossRef PubMed Google Scholar

[75] Filice FP, Li MSM, Henderson JD, Ding Z. Anal Chim Acta, 2016, 908: 85-94 CrossRef PubMed Google Scholar

[76] Henderson JD, Filice FP, Li MSM, Ding Z. J Inorg Biochem, 2016, 158: 92-98 CrossRef PubMed Google Scholar

[77] Henderson JD, Filice FP, Li MSM, Ding Z. ChemElectroChem, 2017, 4: 856-863 CrossRef Google Scholar

[78] Filice FP, Li MSM, Wong JM, Ding Z. J Inorg Biochem, 2018, 182: 222-229 CrossRef PubMed Google Scholar

[79] Zhang MN, Ding Z, Long YT. Analyst, 2015, 140: 6054-6060 CrossRef PubMed ADS Google Scholar

[80] Pampaloni F, Reynaud EG, Stelzer EHK. Nat Rev Mol Cell Biol, 2007, 8: 839-845 CrossRef PubMed Google Scholar

[81] Lei KF, Lin BY, Tsang NM. RSC Adv, 2017, 7: 13939-13946 CrossRef Google Scholar

[82] Takahashi R, Zhou Y, Horiguchi Y, Shiku H, Sonoda H, Itabashi N, Yamamoto J, Saito T, Matsue T, Hisada A. J Biosci Bioeng, 2014, 117: 113-121 CrossRef PubMed Google Scholar

[83] Sridhar A, de Boer HL, van den Berg A, Le Gac S. PLoS ONE, 2014, 9: e93618 CrossRef PubMed ADS Google Scholar

[84] Zhao L, Shi M, Liu Y, Zheng X, Xiu J, Liu Y, Tian L, Wang H, Zhang M, Zhang X. Anal Chem, 2019, 91: 4307-4311 CrossRef PubMed Google Scholar

[85] Lin TE, Bondarenko A, Lesch A, Pick H, Cortés-Salazar F, Girault HH. Angew Chem Int Ed, 2016, 55: 3813-3816 CrossRef PubMed Google Scholar

[86] Kuss S, Trinh D, Danis L, Mauzeroll J. Anal Chem, 2015, 87: 8096-8101 CrossRef PubMed Google Scholar

[87] Matsumae Y, Takahashi Y, Ino K, Shiku H, Matsue T. Anal Chim Acta, 2014, 842: 20-26 CrossRef PubMed Google Scholar

[88] Bondarenko A, Lin TE, Stupar P, Lesch A, Cortés-Salazar F, Girault HH, Pick H. Anal Chem, 2016, 88: 11436-11443 CrossRef PubMed Google Scholar

[89] Filice FP, Li MSM, Ding Z. Adv Theor Simul, 2018, 2: 1800124 CrossRef Google Scholar

[90] Bard AJ, Mirkin MV. Scanning Electrochemical Microscopy. Second Edition. New York: Taylor & Francis Group, 2012. Google Scholar

[91] Amemiya S, Guo J, Xiong H, Gross DA. Anal Bioanal Chem, 2006, 386: 458-471 CrossRef PubMed Google Scholar

[92] Wang W, Liu ZB, Bao Y, Guan YR, Niu L, Zhang GY. Chin J Analyt Chem, 2018, 46: 342–347 (in Chinese) [王伟, 刘振邦, 包宇, 关怡然, 牛利, 张国玉. 分析化学, 2018, 46: 342–347]. Google Scholar

  • Figure 1

    Schematic diagram of applications of SECM in studies of single cell, cell spheroid and microtissue [15,52,64,84] (color online).

  • Figure 2

    Schematic diagram of the SECM system for cell studies (color online).

  • Figure 3

    Examples of SECM probes (i.e., ultramicroelectrodes) used for cell studies. (a) 25 µm-in-diameter Pt disc microelectrode [53]; (b) micropipette electrode [39]; (c) glass micropipette/carbon dual microelectrode [40]; (d) Au/micropipette microring dual microelectrode [25]; (e) 114 nm-in-diameter Pt nanoelectrode [51]; (f) nanopipette electrode [52] (color online).

  • Figure 4

    Schematic diagram of the three SECM operational modes and the principles for characterizations of cells. (a) The probe is in the bulk solution and far away from the substrate (steady-state behavior); (b) positive feedback mode; (c) negative feedback mode; (d) probe generation/substrate collection mode; (e) substrate generation/probe collection mode; (f) redox competition mode; (g) feedback mode for detection of cell GSH status; (h) feedback mode for characterization of cell morphology; (i) substrate production/probe collection mode for detection of ROS efflux of cells (color online).

  • Figure 5

    Application examples of SECM in neuron studies. (a) Application of SECM to characterize the morphology of PC12 cells and their total contents of neurotransmitters [58]; (b) Principle diagram of using programmable-SECM to characterize cells and the three SECM images of PC12 cells, which correspond to cell height, membrane permeability and cell respiration [59]; (c) Schematic diagram of using nanoelectrode to detect the process of single-synaptic released neurotransmitter and the detection results [52] (color online).

  • Figure 6

    Application examples of SECM in studies of cardiomyocytes. (a) Application of SECM to characterize the pulsation and oxygen consumption of cardiomyocytes [21]; (b) Application of SECM combined with micropipette injection system and cell culture chamber to detect the pulsation and oxygen consumption of cardiomyocytes [22]; Applications of SECM to investigate (c) the efflux of GSH released from cardiomyocytes cultured on the substrates with different stiffness [64] and (d) the redox state of healthy and pathological hmMSCs cells [66,67] (color online).

  • Figure 7

    Application examples of SECM in tumor cell studies. (a) SECM images of MCF10A cells cultured on different monolayers [69]; (b) The principle of SECM to detect SEAP expression on the cell membrane and the fluorescence and SECM images of SEAP expression in the microwell arrays [71]; (c) The principle of SECM to study GSH efflux and the SECM image of GSH efflux of HeLa cells [8]; (d) The principle of SECM to detect released H2O2 and the SECM images of H2O2 of T24 cells for different times [76]; (e) The principle of SECM to detect cell membrane permeability and optical microscopic images and SECM images of FcCH2OH diffusion of T24 cells after adding different concentrations of CdCl2 [15]; (f) Application of Pt-modified carbon nanoelectrode as SECM probes to detect RNS/ROS species (H2O2, ONOO, NO, NO2) inside breast cancer cells (MDA-MB-231, MDA-MB-468, MCF-10A) and their voltammograms [16] (color online).

  • Figure 8

    Application examples of SECM in characterizations of cell spheroids and microtissues. (a) Monitoring the oxygen consumption of HeLa microtissues by SECM [83]; (b) Characterizations of surface topography and ALP activity of breast cancer MCF-7 cell spheroid by SECM [84]; (c) Mapping the tyrosinase (TyR) distribution of skin biopsies from melanoma patients by SECM [85] (color online).

  • Table 1   Summary of SECM applications in studies of single cell, cell spheroid and microtissues (from 2010 to 2020)

    研究对象

    细胞、细胞球和微组织种类

    探针种类

    表征参数

    参考文献

    神经细胞

    PC12

    铂微电极(直径10 µm)

    形貌

    呼吸活性

    [57,59]

    碳电极(直径150 nm)

    形貌

    NO

    多巴胺

    [58]

    SCG

    铂/玻璃管微圆环双通道微电极

    (内径0.33 µm, 外径0.55 µm)

    形貌

    [25]

    神经元

    玻璃管微电极(直径30 nm、860 nm)

    乙酰胆碱

    [39,52]

    心肌细胞

    心室壁细胞

    铂微电极(直径10 µm)

    搏动

    O2

    GSH

    [21,22]

    铂/玻璃管微圆环双通道微电极

    (内径0.33 µm, 外径0.55 µm)

    形貌

    呼吸活性

    [25]

    心肌间充质干细胞

    铂微电极(直径10 µm)

    氧化还原状态

    [66,67]

    肿瘤细胞

    HeLa

    铂微电极(直径10 µm, 20 µm, 25 µm, 50 µm)

    MRP1泵的表达

    NAD(P)H醌氧化还原酶活性

    碱性磷酸酶活性

    [8,9,14,71,72,84,86,87]

    碳纤维微电极(直径7 µm)

    MRP1泵的表达

    [73]

    WM-115

    铂微电极(直径25 µm)

    细胞膜通透性

    [88]

    A431

    铂/玻璃微管电极(直径1.25 µm)

    碱性磷酸酶活性

    [41]

    T24

    铂微电极(直径5 µm、10 µm)

    细胞膜通透性

    O2

    H2O2

    [15,74~79,89]

    MCF-10A

    碳纳米电极(直径80 nm)

    H2O2

    O2•−

    ONOO

    NO

    NO2

    [16]

    RT112

    铂微电极(直径10 µm)

    跨膜蛋白CD44表达

    [10]

    PC3

    铂微电极(直径10 µm)

    H2O2

    [20]

    HS578T

    铂微电极(直径1 µm、10 µm)

    O2

    [28]

    HepG2

    铂微电极(直径10 µm)

    形貌

    [6]

    SCC25

    石墨糊微电极(直径10 µm)

    迁移

    [70]

    细胞球

    微组织

    HeLa微组织

    铂微电极(直径10 µm)

    O2

    [83]

    肝细胞球

    铂微电极(直径10 µm)

    O2

    [82]

    MCF-7细胞微球

    铂微电极(直径25 µm)

    碱性磷酸酶活性

    [84]

    HepG2微组织

    铂微电极(直径10 µm)

    O2

    [17]

    黑色素瘤微组织

    Tyr修饰的铂微电极(直径10 µm)

    TyR

    [85]