logo

SCIENTIA SINICA Chimica, Volume 50 , Issue 11 : 1560-1574(2020) https://doi.org/10.1360/SSC-2020-0151

Recent advances in upconversion emission modulation of rare earth nanocrystals

More info
  • ReceivedAug 8, 2020
  • AcceptedAug 17, 2020
  • PublishedOct 21, 2020

Abstract


Funding

国家重点研发计划(2017YFA0205101,2017YFA0205104)

国家自然科学基金(21590791,21771005,21931001)


References

[1] Bünzli JCG, Piguet C. Chem Soc Rev, 2005, 341048-1077 CrossRef Google Scholar

[2] Auzel F. Chem Rev, 2004, 104139-174 CrossRef Google Scholar

[3] Eliseeva SV, Bünzli JCG. Chem Soc Rev, 2010, 39189-227 CrossRef Google Scholar

[4] Shen J, Sun LD, Yan CH. Dalton Trans, 2008, 5687-5697 CrossRef Google Scholar

[5] Zhou B, Shi B, Jin D, Liu X. Nat Nanotech, 2015, 10924-936 CrossRef ADS Google Scholar

[6] Fernandez-Bravo A, Yao K, Barnard ES, Borys NJ, Levy ES, Tian B, Tajon CA, Moretti L, Altoe MV, Aloni S, Beketayev K, Scotognella F, Cohen BE, Chan EM, Schuck PJ. Nat Nanotech, 2018, 13572-577 CrossRef ADS Google Scholar

[7] Liu Y, Lu Y, Yang X, Zheng X, Wen S, Wang F, Vidal X, Zhao J, Liu D, Zhou Z, Ma C, Zhou J, Piper JA, Xi P, Jin D. Nature, 2017, 543229-233 CrossRef ADS Google Scholar

[8] Zheng K, Loh KY, Wang Y, Chen Q, Fan J, Jung T, Nam SH, Suh YD, Liu X. Nano Today, 2019, 29100797 CrossRef Google Scholar

[9] Dong H, Sun LD, Yan CH. Nanoscale, 2013, 55703-5714 CrossRef ADS Google Scholar

[10] Bloembergen N. Phys Rev Lett, 1959, 2: 84–85. Google Scholar

[11] Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X. Chem Soc Rev, 2015, 441379-1415 CrossRef Google Scholar

[12] Dong H, Sun LD, Yan CH. Chem Soc Rev, 2015, 441608-1634 CrossRef Google Scholar

[13] Feng W, Sun LD, Zhang YW, Yan CH. Coord Chem Rev, 2010, 2541038-1053 CrossRef Google Scholar

[14] Zhang YW, Sun X, Si R, You LP, Yan CH. J Am Chem Soc, 2015, 1273260-3261 CrossRef Google Scholar

[15] Mai HX, Zhang YW, Si R, Yan ZG, Sun L, You LP, Yan CH. J Am Chem Soc, 2016, 1286426-6436 CrossRef Google Scholar

[16] Wang YF, Sun LD, Xiao JW, Feng W, Zhou JC, Shen J, Yan CH. Chem Eur J, 2012, 185558-5564 CrossRef Google Scholar

[17] Dong H, Sun LD, Li LD, Si R, Liu R, Yan CH. J Am Chem Soc, 2017, 13918492-18495 CrossRef Google Scholar

[18] Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH. ACS Nano, 2017, 113289-3297 CrossRef Google Scholar

[19] Mai HX, Zhang YW, Sun LD, Yan CH. J Phys Chem C, 2007, 11113721-13729 CrossRef Google Scholar

[20] Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR. Chem Mater, 2004, 161244-1251 CrossRef Google Scholar

[21] Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GM, Shi S, Yan CH. J Am Chem Soc, 2015, 1376569-6576 CrossRef Google Scholar

[22] Yin AX, Zhang YW, Sun LD, Yan CH. Nanoscale, 2010, 2953-959 CrossRef ADS Google Scholar

[23] Johnson NJJ, He S, Diao S, Chan EM, Dai H, Almutairi A. J Am Chem Soc, 2017, 1393275-3282 CrossRef Google Scholar

[24] Shen B, Cheng S, Gu Y, Ni D, Gao Y, Su Q, Feng W, Li F. Nanoscale, 2017, 91964-1971 CrossRef Google Scholar

[25] Chan EM, Han G, Goldberg JD, Gargas DJ, Ostrowski, AD, Schuck PJ, Cohen BE, Milliron DJ. Nano Lett, 2012, 12: 3839–3845. Google Scholar

[26] Zhong Y, Ma Z, Zhu S, Yue J, Zhang M, Antaris AL, Yuan J, Cui R, Wan H, Zhou Y, Wang W, Huang NF, Luo J, Hu Z, Dai H. Nat Commun, 2017, 8737 CrossRef ADS Google Scholar

[27] Shi S, Sun LD, Xue YX, Dong H, Wu K, Guo SC, Wu BT, Yan CH. Nano Lett, 2018, 182964-2969 CrossRef ADS Google Scholar

[28] Suyver JF, Aebischer A, García-Revilla S, Gerner P, Güdel HU. Phys Rev B, 2005, 71125123 CrossRef ADS Google Scholar

[29] Wang L, Dong H, Li Y, Xue C, Sun LD, Yan CH, Li Q. J Am Chem Soc, 2014, 1364480-4483 CrossRef Google Scholar

[30] Zhao J, Jin D, Schartner EP, Lu Y, Liu Y, Zvyagin AV, Zhang L, Dawes JM, Xi P, Piper JA, Goldys EM, Monro TM. Nat Nanotech, 2013, 8729-734 CrossRef ADS Google Scholar

[31] Gargas DJ, Chan EM, Ostrowski AD, Aloni S, Altoe MVP, Barnard ES, Sanii B, Urban JJ, Milliron DJ, Cohen BE, Schuck PJ. Nat Nanotech, 2014, 9300-305 CrossRef ADS Google Scholar

[32] Zhou L, Wang R, Yao C, Li X, Wang C, Zhang X, Xu C, Zeng A, Zhao D, Zhang F. Nat Commun, 2016, 66938 CrossRef ADS Google Scholar

[33] Deng R, Wang J, Chen R, Huang W, Liu X. J Am Chem Soc, 2016, 13815972-15979 CrossRef Google Scholar

[34] Garfield DJ, Borys NJ, Hamed SM, Torquato NA, Tajon CA, Tian B, Shevitski B, Barnard ES, Suh YD, Aloni S, Neaton JB, Chan EM, Cohen BE, Schuck PJ. Nat Photon, 2018, 12402-407 CrossRef ADS Google Scholar

[35] Wang F, Wang J, Liu X. Angew Chem Int Ed, 2010, 497456-7460 CrossRef Google Scholar

[36] Fischer S, Bronstein ND, Swabeck JK, Chan EM, Alivisatos AP. Nano Lett, 2016, 167241-7247 CrossRef ADS Google Scholar

[37] Wang YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH. ACS Nano, 2013, 77200-7206 CrossRef Google Scholar

[38] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X. Nat Nanotech, 2015, 10237-242 CrossRef ADS Google Scholar

[39] Hao J, Zhang Y, Wei X. Angew Chem Int Ed, 2011, 506876-6880 CrossRef Google Scholar

[40] Pan E, Bai G, Zhou J, Lei L, Xu S. Nanoscale, 2019, 1111642-11648 CrossRef Google Scholar

[41] Liu Y, Wang D, Shi J, Peng Q, Li Y. Angew Chem Int Ed, 2013, 524366-4369 CrossRef Google Scholar

[42] Wang YL, Zhang JP, Han JB, Hao ZH, Wang QQ. J Appl Phys, 2015, 117083903 CrossRef ADS Google Scholar

[43] Park W, Lu D, Ahn S. Chem Soc Rev, 2015, 442940-2962 CrossRef Google Scholar

[44] Kang F, He J, Sun T, Bao ZY, Wang F, Lei DY. Adv Funct Mater, 2017, 271701842 CrossRef Google Scholar

[45] Zhou D, Liu D, Xu W, Yin Z, Chen X, Zhou P, Cui S, Chen Z, Song H. ACS Nano, 2016, 105169-5179 CrossRef Google Scholar

[46] Wang L, Guo S, Liu D, He J, Zhou J, Zhang K, Wei Y, Pan Y, Gao C, Yuan Z, Lei D, Xie X, Huang L. Adv Funct Mater, 2019, 291901242 CrossRef Google Scholar

[47] Narayana C, Luo H, Orloff J, Ruoff AL. Nature, 1998, 39346-49 CrossRef ADS Google Scholar

[48] Tolbert SH, Alivisatos AP. Science, 1994, 265373-376 CrossRef ADS Google Scholar

[49] Xiao G, Yang X, Zhang X, Wang K, Huang X, Ding Z, Ma Y, Zou G, Zou B. J Am Chem Soc, 2015, 13710297-10303 CrossRef Google Scholar

[50] Wu H, Bai F, Sun Z, Haddad RE, Boye DM, Wang Z, Huang JY, Fan H. J Am Chem Soc, 2010, 13212826-12828 CrossRef Google Scholar

[51] Wu H, Bai F, Sun Z, Haddad RE, Boye DM, Wang Z, Fan H. Angew Chem Int Ed, 2010, 498431-8434 CrossRef Google Scholar

[52] Podsiadlo P, Lee B, Prakapenka VB, Krylova GV, Schaller RD, Demortière A, Shevchenko EV. Nano Lett, 2011, 11579-588 CrossRef ADS Google Scholar

[53] Nagaoka Y, Hills-Kimball K, Tan R, Li R, Wang Z, Chen O. Adv Mater, 2017, 291606666 CrossRef Google Scholar

[54] Wang L, Yang W, Ding Y, Ren Y, Xiao S, Liu B, Sinogeikin SV, Meng Y, Gosztola DJ, Shen G, Hemley RJ, Mao WL, Mao HK. Phys Rev Lett, 2010, 105095701 CrossRef ADS Google Scholar

[55] Quan Z, Wang Y, Bae IT, Loc WS, Wang C, Wang Z, Fang J. Nano Lett, 2011, 115531-5536 CrossRef ADS Google Scholar

[56] Grzechnik A, Bouvier P, Crichton WA, Farina L, Köhler J. Solid State Sci, 2002, 4895-899 CrossRef Google Scholar

[57] Grzechnik A, Bouvier P, Mezouar M, Mathews MD, Tyagi AK, Köhler J. J Solid State Chem, 2002, 165159-164 CrossRef ADS Google Scholar

[58] Mei S, Guo Y, Lin X, Dong H, Sun LD, Li K, Yan CH. J Phys Chem Lett, 2020, 113515-3520 CrossRef Google Scholar

[59] Renero-Lecuna C, Martín-Rodríguez R, Valiente R, González J, Rodriguez F, Krämer KW, Güdel HU. Chem Mater, 2011, 233442-3448 CrossRef Google Scholar

[60] Wisser MD, Chea M, Lin Y, Wu DM, Mao WL, Salleo A, Dionne JA. Nano Lett, 2015, 151891-1897 CrossRef ADS Google Scholar

[61] Lay A, Wang DS, Wisser MD, Mehlenbacher RD, Lin Y, Goodman MB, Mao WL, Dionne JA. Nano Lett, 2017, 174172-4177 CrossRef ADS Google Scholar

[62] Joseph RL. Principles of Fluorescence Spectroscopy. Boston: Springer, 1999. Google Scholar

[63] Grattan KTV, Zhang ZY, Grattan LS, Zhang Z. Fiber Optic Fluorescence Thermometry. Boston: Springer, 1995. Google Scholar

[64] Vetrone F, Naccache R, Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, Martinez Maestro L, Martín Rodriguez E, Jaque D, García Solé J, Capobianco JA. ACS Nano, 2010, 43254-3258 CrossRef Google Scholar

[65] Zhu X, Feng W, Chang J, Tan YW, Li J, Chen M, Sun Y, Li F. Nat Commun, 2016, 710437 CrossRef ADS Google Scholar

[66] Jaque D, del Rosal B, Rodríguez EM, Maestro LM, Haro-González P, Solé JG. Nanomedicine, 2014, 91047-1062 CrossRef Google Scholar

[67] Wang X, Wolfbeis OS, Meier RJ. Chem Soc Rev, 2013, 427834-7869 CrossRef Google Scholar

[68] Wuister SF, van Houselt A, de Mello Donegá C, Vanmaekelbergh D, Meijerink A. Angew Chem Int Ed, 2004, 433029-3033 CrossRef Google Scholar

[69] Wuister SF, de Mello Donegá C, Meijerink A. J Am Chem Soc, 2004, 12610397-10402 CrossRef Google Scholar

[70] Brites CDS, Balabhadra S, Carlos LD. Adv Opt Mater, 2019, 71801239 CrossRef Google Scholar

[71] Pan Y, Xie X, Huang Q, Gao C, Wang Y, Wang L, Yang B, Su H, Huang L, Huang W. Adv Mater, 2018, 301705256 CrossRef Google Scholar

[72] Xu M, Zou X, Su Q, Yuan W, Cao C, Wang Q, Zhu X, Feng W, Li F. Nat Commun, 2018, 92698 CrossRef ADS Google Scholar

[73] Li D, Shao Q, Dong Y, Jiang J. J Phys Chem C, 2014, 11822807-22813 CrossRef Google Scholar

[74] Cui X, Cheng Y, Lin H, Huang F, Wu Q, Wang Y. Nanoscale, 2017, 913794-13799 CrossRef Google Scholar

[75] Zhou J, Wen S, Liao J, Clarke C, Tawfik SA, Ren W, Mi C, Wang F, Jin D. Nat Photon, 2018, 12154-158 CrossRef ADS Google Scholar

[76] Hu Y, Shao Q, Zhang P, Dong Y, Fang F, Jiang J. J Phys Chem C, 2018, 12226142-26152 CrossRef Google Scholar

[77] Wang Z, Christiansen J, Wezendonk D, Xie X, van Huis MA, Meijerink A. Nanoscale, 2019, 1112188-12197 CrossRef Google Scholar

  • Figure 1

    (a) Typical upconversion mechanisms of Ln3+, from left to right: ESA, ETU, CSU, PA and EMU. (b) Proposed upconversion mechanisms in Yb3+-Er3+, Yb3+-Tm3+ and Yb3+-Ho3+, respectively. (c) Typical upconversion emission spectra of Er3+ and Tm3+, which range from UV to visible and NIR. (d) Schematic illustration showing the adjustable upconversion decay profiles from microseconds to milliseconds [11] (color online).

  • Figure 2

    Rare earth fluoride nanoparticles synthesized from thermal decomposition methods. (a) LaF3 [14]; (b) cubic NaYbF4 [15]; (c) hexagonal NaYF4:Yb,Er [15]; (d) cubic NaYF4:Yb,Er@CaF2 [16]; (e) hexagonal NaGdF4:Yb,Er@CaF2 [17]; (f) hexagonal NaREF4 based multilayered core/shell nanoparticles [18] (color online).

  • Figure 3

    Typical approaches for tailoring upconversion emissions. (a) Tuning upconversion emission by controlling the composition of NaxREF3+x [21]. (b) Multiphoton cross-relaxations in Er3+-Tm3+ and Er3+-Mn2+ pairs and upconversion emission spectra of Er3+-Ln3+ pairs [25]. (c) Schematic illustration for the excitation dependent upconversion transition behaviors and emission spectra of Tm3+ under excitation with different power density [29]. (d) Schematic illustration showing NaYF4:Yb,Tm-FITC and NaGdF4:Yb,Tm@NaGdF4-FITC resonant energy transfer nanocomposites and time-resolved upconversion emission spectra [33] (color online).

  • Figure 4

    Tuning upconversion excitation and emission with core/shell structures. (a) Design of NaREF4-based multilayered core/shell nanoparticles capable of emitting tunable colors when irradiated with different NIR lasers [38]. (b) Schematic illustration and experimental results of the NIR laser controlled volumetric three-dimensional full-color display [38]. (c) NaREF4-based multilayered core/shell nanoparticles showing excitation orthogonalized upconversion emission [18]. (d) Schematic illustration and experimental tailing decay luminescence imaging under 980 and 808 nm excitation, respectively [18]. (e) Pseudo-colored time-gated luminescence imaging with multilayered core/shell nanoparticles in different excitation channels [18] (color online).

  • Figure 5

    Tuning upconversion emission with electric and magnetic fields. (a) Schematic illustration for electric tuning of upconversion (left) and corresponding emission spectra (right) of BaTiO3:Yb,Er under dc bias voltage ranging from 0 to 10 V [39]. (b) Schematic illustration for magnetic tuning of upconversion (left) and corresponding emission spectra (right) of NaGdF4:Nd,Yb,Er under different magnetic fields [41] (color online).

  • Figure 6

    Tuning upconversion emission with high pressures. (a) Local structure change of hexagonal NaREF4 under low (0.7 GPa) and high(33.5 GPa) pressures, respectively [58]. As the pressure increases, the local symmetry in ab direction increases, while that in c direction decreases. Schematic illustration for high-pressure tuning of upconversion (b), the emission spectra of cubic (c) and hexagonal (d) NaYF4:Yb,Er under different pressures, XRD patterns of hexagonal NaYF4:Yb,Er under different pressures (e) [60] (color online).

  • Figure 7

    Correlation between temperatures and lanthanide emissions. (a) Schematic illustration for Sc2O3:Eu2+/Eu3+ nanothermometers and corresponding emission spectra at 77–267 K [71]. (b) Schematic illustration for TTA-NaYF4:Nd nanothermometers and corresponding emission spectra at 283–323 K. Em I and II correspond to emissions from TTA upconversion and Nd3+ emissions, respectively. Insets are corresponding integrated intensity versus temperature [72] (color online).

  • Figure 8

    Tuning upconversion emission with temperature. (a) Upconversion emission intensity versus temperature for hexagonal NaYF4:Yb,Er nanocrystals with different size. (b) Upconversion emission spectra of 7 nm NaYF4:Yb,Er nanocrystals under different temperature [73] (color online).

  • Figure 9

    Tuning upconversion emission with temperatures. (a) Schematic illustration for surface-phonon-enhanced upconversion emission. (b) Upconversion emission spectra of 10 nm NaYF4:Yb,Tm nanocrystals under 303 and 453 K[75] (color online).

  • Figure 10

    Tuning upconversion emission with temperatures. (a) Upconversion emission intensity versus temperature for hexagonal NaGdF4:Yb,Ho/Er/Tm nanocrystals in Ar or Ar&H2O atmosphere [74]. (b) Temperature-dependent upconversion emission spectra of NaY(WO4)2:49%Yb,1%Er nanocrystals (top) and microcrystals (bottom) under ambient atmosphere [75]. (c) Illustration of the upconversion emission correlation with water on the surface [75] (color online).

qqqq

Contact and support