logo

Chinese Science Bulletin, Volume 61 , Issue 30 : 3181-3187(2016) https://doi.org/10.1360/N972016-00924

Recent progress on the structure of liquid water

More info
  • ReceivedAug 17, 2016
  • AcceptedAug 24, 2016
  • PublishedSep 7, 2016

Abstract


References

[1] Franks F. Water: A Matrix of Life. 2nd ed. Cambridge: Royal Society of Chemistry, 2000. Google Scholar

[2] Ben-Naim A. Molecular Theory of Water and Aqueous Solutions. New Jersey: World Scientific, 2009. Google Scholar

[3] Tu Y S, Fang H P. The microstructure of liquid water (in Chinese). Physics, 2010, 39: 79–84 [涂育松, 方海平. 液态水微观结构研究的新进展. 物理, 2010, 39: 79–84]. Google Scholar

[4] Kennedy D, Norman C. What don’t we know? Science, 2005, 309: 75. Google Scholar

[5] Whitesides G M. Reinventing Chemistry. Angew Chem Int Ed, 2015, 543196-3209 CrossRef Google Scholar

[6] Chaplin M. Do we underestimate the importance of water in cell biology?. Nat Rev Mol Cell Biol, 2006, 7861-866 CrossRef Google Scholar

[7] Russell B, ed. He Z W, Needham J T M, trans. The History of Western Philosophy (in Chinese). Beijing: The Commercial Press, 1963. 193–194 [Russell B, 著. 何兆武, 李约瑟, 译. 西方哲学史. 北京: 商务印书馆, 1963. 193–194]. Google Scholar

[8] Pauling L. The Nature of Chemical Bond. New York: Cornell University Press, 1960. Google Scholar

[9] Mak T C W, Zhou G D, Li W J. Advanced Structural Inorganic Chemistry (in Chinese). 2nd ed. Beijing: Peking University Press, 2006 [麦松威, 周公度, 李伟基. 高等无机结构化学(第二版). 北京: 北京大学出版社, 2006]. Google Scholar

[10] Bolander R W, Kassner J L, Zung J T. Cluster structure of the anomalous liquid water. Nature, 1969, 221: 5187–5188. Google Scholar

[11] Zhang Y, Liu J K. Revisit of the research of “polymerized liquid water” (in Chinese). Univ Chem, 1989, 4: 52–53 [张雁, 刘军钪. 对“聚合水研究”的反思. 大学化学, 1989, 4: 52–53]. Google Scholar

[12] Chen J Y, Zheng H F, Zeng Y S. Recent progress in supercritical water theoretical research (in Chinese). Prog Chem, 2002, 14: 409–415 [陈晋阳, 郑海飞, 曾贻善. 超临界水理论研究的进展. 化学进展, 2002, 14: 409–415]. Google Scholar

[13] Clementi E, Corongiu G, eds. Shuai Z G, Ma Z Y, Zhang T, et al., trans. With computers from atoms to macromolecular systems (in Chinese). Prog Chem, 2011, 23: 1795–1830 [Clementi E, Corongiu G, 著. 帅志刚, 马中云, 张天, 等, 译. 从原子到大分子体系的计算机模拟——计算化学50年. 化学进展, 2011, 23: 1795–1830]. Google Scholar

[14] Liu C W, Wang F, Yang L, et al. Stable Salt–Water Cluster Structures Reflect the Delicate Competition between Ion–Water and Water–Water Interactions. J Phys Chem B, 2014, 118743-751 CrossRef Google Scholar

[15] Rao K R, Sastry M G. Structure of the OD bands of heavy water. Nature, 1940, 145: 778. Google Scholar

[16] Rafalowski S. Structure of Raman band of water. Nature, 1931, 128: 546. Google Scholar

[17] Pieniazek P A, Tainter C J, Skinner J L. Surface of Liquid Water: Three-Body Interactions and Vibrational Sum-Frequency Spectroscopy. J Am Chem Soc, 2011, 13310360-10363 CrossRef Google Scholar

[18] Chen X, Hua W, Huang Z, et al. Interfacial Water Structure Associated with Phospholipid Membranes Studied by Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy. J Am Chem Soc, 2010, 13211336-11342 CrossRef Google Scholar

[19] Fecko C J, Eaves J D, Loparo J J, et al. Ultrafast Hydrogen-Bond Dynamics in the Infrared Spectroscopy of Water. Science, 2003, 3011698-1702 CrossRef ADS Google Scholar

[20] Thämer M, De Marco L, Ramasesha K, et al. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science, 2015, 350: 78−82. Google Scholar

[21] Zhou Y, Zheng Y Z, Sun H Y, et al. Two-State or Non-Two-State? An Excess Spectroscopy-based Approach to Differentiate the Existing Forms of Molecules in Liquids Mixtures. Sci Rep, 2015, 516379 CrossRef ADS Google Scholar

[22] Zhang Q G, Wang N N, Yu Z W. The Hydrogen Bonding Interactions between the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate and Water. J Phys Chem B, 2010, 1144747-4754 CrossRef Google Scholar

[23] Head-Gordon T, Hura G. Water Structure from Scattering Experiments and Simulation. Chem Rev, 2002, 1022651-2670 CrossRef Google Scholar

[24] Sellberg J A, Huang C, McQueen T A, et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature, 2014, 510381-384 CrossRef ADS Google Scholar

[25] Yang B X, Kirz J. Extended x-ray-absorption fine structure of liquid water. Phys Rev B, 1987, 361361-1364 CrossRef ADS Google Scholar

[26] Matubayasi N, Wakai C, Nakahara M. NMR study of water structure in super- and subcritical conditions. Phys Rev Lett, 1997, 78: 2593–2597. Google Scholar

[27] Symons M C R. The structure of liquid water. Nature, 1972, 239: 257–259. Google Scholar

[28] Rahman A, Stillinger F H. Hydrogen-bond patterns in liquid water. J Am Chem Soc, 1973, 957943-7948 CrossRef Google Scholar

[29] Kusalik P G, Svishchev I M. The Spatial Structure in Liquid Water. Science, 1994, 2651219-1221 CrossRef ADS Google Scholar

[30] Wernet P. The Structure of the First Coordination Shell in Liquid Water. Science, 2004, 304995-999 CrossRef ADS Google Scholar

[31] Smith J D, Cappa C D, Wilson K R, et al. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water. Science, 2004, 306851-853 CrossRef ADS Google Scholar

[32] Nilsson A, Wernet P, Nordlund D, et al. Comment on “Energetics of hydrogen bond network rearrangements in liquid water”. Science, 2005, 308: 793. Google Scholar

[33] Smith J D, Cappa C D, Messer B M, et al. Response to comment on ‘‘Energetics of hydrogen bond network rearrangements in liquid water’’. Science, 2005, 308: 793. Google Scholar

[34] Tokushima T, Harada Y, Takahashi O, et al. High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem Phys Lett, 2008, 460: 87–400. Google Scholar

[35] Sun Q. Local statistical interpretation for water structure. Chem Phys Lett, 2013, 568-56990-94 CrossRef ADS Google Scholar

[36] Raichlin Y, Millo A, Katzir A. Investigations of the Structure of Water Using Mid-IR Fiberoptic Evanescent Wave Spectroscopy. Phys Rev Lett, 2004, 93185703 CrossRef ADS Google Scholar

[37] Russo J, Tanaka H. Understanding water’s anomalies with locally favoured structures. Nat Commun, 2014, 5: 3556. Google Scholar

[38] Kühne T D, Khaliullin R Z. Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Nat Communn, 2013, 4: 1450. Google Scholar

[39] Kühne T D, Khaliullin R Z. Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water. J Am Chem Soc, 2014, 136: 3395–3399. Google Scholar

[40] Ghanty T K, Staroverov V N, Koren P R, et al. Is the hydrogen bond in water dimer and ice covalent? J Am Chem Soc, 2000, 122: 1210–1214. Google Scholar

[41] Liu Y, Wu J. Communication: Long-range angular correlations in liquid water. J Chem Phys, 2013, 139041103-041103 CrossRef ADS Google Scholar

[42] Guo J, Lu J T, Feng Y, et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science, 2016, 352321-325 CrossRef ADS Google Scholar

[43] Cowan M L, Bruner B D, Huse N, et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature, 2005, 434199-202 CrossRef ADS Google Scholar

[44] Paarmann A, Hayashi T, Mukamel S, et al. Probing intermolecular couplings in liquid water with two-dimensional infrared photon echo spectroscopy. J Chem Phys, 2008, 128191103-191103 CrossRef ADS Google Scholar

[45] Savolainen J, Ahmed S, Hamm P. Two-dimensional Raman-terahertz spectroscopy of water. Proc Natl Acad Sci, 2013, 11020402-20407 CrossRef ADS Google Scholar

[46] Kotb A. Magnetized Water and Memory Meter. EPE, 2013, 05422-426 CrossRef Google Scholar

[47] Ding Z R, Zhao Y J, Chen F L, et al. Magnetization mechanism of magnetized water (in Chinese). Acta Phys Sin, 2011, 60: 064701 [丁振瑞, 赵亚军, 陈凤玲, 等. 磁化水的磁化机理研究. 物理学报, 2011, 60: 064701]. Google Scholar

[48] Strässle T, Saitta A M, Godec Y L, et al. Structure of Dense Liquid Water by Neutron Scattering to 6.5 GPa and 670 K. Phys Rev Lett, 2006, 96067801 CrossRef ADS Google Scholar

[49] Katayama Y, Hattori T, Saitoh H, et al. Structure of liquid water under high pressure up to 17 GPa. Phys Rev B, 2010, 81014109 CrossRef ADS Google Scholar

[50] Taschin A, Bartolini P, Eramo R, et al. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat Commun, 2013, 4: 2401. Google Scholar

[51] Nauta K, Miller R E. Formation of Cyclic Water Hexamer in Liquid Helium: The Smallest Piece of Ice. Science, 2000, 287293-295 CrossRef ADS Google Scholar

[52] Pérez C, Muckle M T, Zaleski D P, et al. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science, 2012, 336: 897–901. Google Scholar

[53] Cole W T S, Farrell J D, Wales D J, et al. Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 mm. Science, 2016, 52: 1194–1197. Google Scholar

[54] Guevara-Vela J M, Romero-Montalvo E, Mora Gómez V A, et al. Hydrogen bond cooperativity and anticooperativity within the water hexamer. Phys Chem Chem Phys, 2016, 1819557-19566 CrossRef ADS Google Scholar

[55] Wang W H, Zhao L, Yan B. Effects of ions on structure of liquid water (in Chinese). Chem Online, 2010, 73: 491−498 [王文华, 赵林, 阎波. 离子对水结构的影响. 化学通报, 2010, 73: 491–498]. Google Scholar

[56] Xu K, Cao P, Heath J R. Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions. Science, 2010, 3291188-1191 CrossRef ADS Google Scholar

[57] Velasco-Velez J J, Wu C H, Pascal T A, et al. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science, 2014, 346831-834 CrossRef ADS Google Scholar

[58] Nihonyanagi S, Yamaguchi S, Tahara T. Water Hydrogen Bond Structure near Highly Charged Interfaces Is Not Like Ice. J Am Chem Soc, 2010, 1326867-6869 CrossRef Google Scholar

[59] Guo J, Meng X, Chen J, et al. Real-space imaging of interfacial water with submolecular resolution. Nat Mater, 2014, 13184-189 CrossRef ADS Google Scholar

[60] Han S, Choi M Y, Kumar P, et al. Phase transitions in confined water nanofilms. Nat Phys, 2010, 6685-689 CrossRef ADS Google Scholar

[61] Mallamace F, Broccio M, Corsaro C, et al. Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc Natl Acad Sci, 2007, 104424-428 CrossRef ADS Google Scholar

[62] Boynton P, Di Ventra M. Probing Water Structures in Nanopores Using Tunneling Currents. Phys Rev Lett, 2013, 111216804 CrossRef ADS arXiv Google Scholar

[63] Algara-Siller G, Lehtinen O, Wang C R, et al. Square ice in graphene nanocapillaries. Nature, 2015, 516: 443–445. Google Scholar

[64] Zhang R, Murata M, Aharen T, et al. Synthesis of a distinct water dimer inside fullerene C70. Nat Chem, 2016, 8435-441 CrossRef ADS Google Scholar

[65] Ma M, Grey F, Shen L, et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat Nanotech, 2015, 10692-695 CrossRef ADS Google Scholar

[66] Ball P. Water: Water — an enduring mystery. Nature, 2008, 452291-292 CrossRef ADS Google Scholar

[67] Sastry S. Order and oddities. Nature, 2001, 409: 300–301. Google Scholar

[68] Errington J R, Debenedetti P G. Relationship between structural order and the anomalies of liquid water. Nature, 2001, 409318-321 CrossRef Google Scholar

  • Figure 1

    Different experimental methods and the time scales of different motion modes of water molecule

  • Figure 2

    Different structural models of liquid water. (a) Tetrahedron model; (b) loop model; (c) disordered hydrogen bond model. Red balls are oxygen atoms and white balls are hydrogen atoms

  • 尉志武

    1984年毕业于清华大学化学与化学工程系, 获学士学位; 1987年在清华大学化学系获硕士学位; 其后留校任教. 1992年出国留学, 于1995年在伦敦大学(英皇学院)获得博士学位; 1996~1998年在伊利诺伊大学(香槟)从事博士后研究; 1998年回到清华大学任教, 现为清华大学化学系教授. 目前的学术兼职主要有中国化学会理事、化学热力学与热分析专业委员会副主任、北京化学会副理事长、《科学通报》和《物理化学学报》编委、Biomedical Spectroscopy and Imaging亚洲区编辑、北京同步辐射国家实验室用户委员会副主任. 教育部“高校青年教师奖”获得者. 研究领域为化学热力学和分子光谱学, 内容涉及溶液化学、模型生物膜的相行为、分子光谱法研究分子间相互作用等.

qqqq

Contact and support