References
[1]
Lander
E S,
Linton
L M,
Birren
B, et al.
Initial sequencing and analysis of the human genome.
Nature,
2001, 409: 860-921
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Initial sequencing and analysis of the human genome&author=Lander E S&author=Linton L M&author=Birren B&publication_year=2001&journal=Nature&volume=409&pages=860-921
[2]
Pennisi
E.
How Will Big Pictures Emerge From a Sea of Biological Data?.
Science,
2005, 309: 94-94
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=How Will Big Pictures Emerge From a Sea of Biological Data?&author=Pennisi E&publication_year=2005&journal=Science&volume=309&pages=94-94
[3]
The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature, 2012, 491: 56–65.
Google Scholar
http://scholar.google.com/scholar_lookup?title=The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature, 2012, 491: 56–65&
[4]
Tennessen
J A,
Bigham
A W,
O'Connor
T D, et al.
Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes.
Science,
2012, 337: 64-69
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes&author=Tennessen J A&author=Bigham A W&author=O'Connor T D&publication_year=2012&journal=Science&volume=337&pages=64-69
[5]
Mailman M D, Feolo M, Jin Y M, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet, 2007, 39: 1181–1186.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mailman M D, Feolo M, Jin Y M, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet, 2007, 39: 1181–1186&
[6]
Bamshad
M J,
Ng
S B,
Bigham
A W, et al.
Exome sequencing as a tool for Mendelian disease gene discovery.
Nat Rev Genet,
2011, 12: 745-755
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exome sequencing as a tool for Mendelian disease gene discovery&author=Bamshad M J&author=Ng S B&author=Bigham A W&publication_year=2011&journal=Nat Rev Genet&volume=12&pages=745-755
[7]
Kiezun
A,
Garimella
K,
Do
R, et al.
Exome sequencing and the genetic basis of complex traits.
Nat Genet,
2012, 44: 623-630
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exome sequencing and the genetic basis of complex traits&author=Kiezun A&author=Garimella K&author=Do R&publication_year=2012&journal=Nat Genet&volume=44&pages=623-630
[8]
Dewey
F E,
Grove
M E,
Pan
C, et al.
Clinical Interpretation and Implications of Whole-Genome Sequencing.
JAMA,
2014, 311: 1035-1045
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Clinical Interpretation and Implications of Whole-Genome Sequencing&author=Dewey F E&author=Grove M E&author=Pan C&publication_year=2014&journal=JAMA&volume=311&pages=1035-1045
[9]
Cirulli E T, Goldstein D B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 2010, 11: 415–425.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cirulli E T, Goldstein D B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 2010, 11: 415–425&
[10]
Ng
S B,
Buckingham
K J,
Lee
C, et al.
Exome sequencing identifies the cause of a mendelian disorder.
Nat Genet,
2010, 42: 30-35
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exome sequencing identifies the cause of a mendelian disorder&author=Ng S B&author=Buckingham K J&author=Lee C&publication_year=2010&journal=Nat Genet&volume=42&pages=30-35
[11]
Sanders
S J,
Murtha
M T,
Gupta
A R, et al.
De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
Nature,
2012, 485: 237-241
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=De novo mutations revealed by whole-exome sequencing are strongly associated with autism&author=Sanders S J&author=Murtha M T&author=Gupta A R&publication_year=2012&journal=Nature&volume=485&pages=237-241
[12]
Cirulli
E T,
Lasseigne
B N,
Petrovski
S, et al.
Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.
Science,
2015, 347: 1436-1441
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways&author=Cirulli E T&author=Lasseigne B N&author=Petrovski S&publication_year=2015&journal=Science&volume=347&pages=1436-1441
[13]
Smith
B N,
Ticozzi
N,
Fallini
C, et al.
Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS.
Neuron,
2014, 84: 324-331
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS&author=Smith B N&author=Ticozzi N&author=Fallini C&publication_year=2014&journal=Neuron&volume=84&pages=324-331
[14]
Purcell
S M,
Moran
J L,
Fromer
M, et al.
A polygenic burden of rare disruptive mutations in schizophrenia.
Nature,
2014, 506: 185-190
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A polygenic burden of rare disruptive mutations in schizophrenia&author=Purcell S M&author=Moran J L&author=Fromer M&publication_year=2014&journal=Nature&volume=506&pages=185-190
[15]
Peloso
G M,
Auer
P L,
Bis
J C, et al.
Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary Heart Disease in 56,000 Whites and Blacks.
Am J Human Genets,
2014, 94: 223-232
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary Heart Disease in 56,000 Whites and Blacks&author=Peloso G M&author=Auer P L&author=Bis J C&publication_year=2014&journal=Am J Human Genets&volume=94&pages=223-232
[16]
Lohmueller K E, Sparsø T, Li Q, et al. Whole-exome sequencing of 2000 Danish individuals and the role of rare coding variants in type 2 diabetes. Am J Human Genet, 2013, 93: 1072–1086.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lohmueller K E, Sparsø T, Li Q, et al. Whole-exome sequencing of 2000 Danish individuals and the role of rare coding variants in type 2 diabetes. Am J Human Genet, 2013, 93: 1072–1086&
[17]
Diogo
D,
Kurreeman
F,
Stahl
E A, et al.
Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological Candidate Genes from GWASs Contribute to Risk of Rheumatoid Arthritis.
Am J Human Genets,
2013, 92: 15-27
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological Candidate Genes from GWASs Contribute to Risk of Rheumatoid Arthritis&author=Diogo D&author=Kurreeman F&author=Stahl E A&publication_year=2013&journal=Am J Human Genets&volume=92&pages=15-27
[18]
Sobreira
N L M,
Cirulli
E T,
Avramopoulos
D, et al.
Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene.
PLoS Genet,
2010, 6: e1000991
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene&author=Sobreira N L M&author=Cirulli E T&author=Avramopoulos D&publication_year=2010&journal=PLoS Genet&volume=6&pages=e1000991
[19]
Lupski
J R,
Reid
J G,
Gonzaga-Jauregui
C, et al.
Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy.
N Engl J Med,
2010, 362: 1181-1191
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy&author=Lupski J R&author=Reid J G&author=Gonzaga-Jauregui C&publication_year=2010&journal=N Engl J Med&volume=362&pages=1181-1191
[20]
Veeramah
K R,
O'Brien
J E,
Meisler
M H, et al.
De Novo Pathogenic SCN8A Mutation Identified by Whole-Genome Sequencing of a Family Quartet Affected by Infantile Epileptic Encephalopathy and SUDEP.
Am J Human Genets,
2012, 90: 502-510
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=De Novo Pathogenic SCN8A Mutation Identified by Whole-Genome Sequencing of a Family Quartet Affected by Infantile Epileptic Encephalopathy and SUDEP&author=Veeramah K R&author=O'Brien J E&author=Meisler M H&publication_year=2012&journal=Am J Human Genets&volume=90&pages=502-510
[21]
Michaelson
J J,
Shi
Y,
Gujral
M, et al.
Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation.
Cell,
2012, 151: 1431-1442
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation&author=Michaelson J J&author=Shi Y&author=Gujral M&publication_year=2012&journal=Cell&volume=151&pages=1431-1442
[22]
Jiang
Y,
Yuen
R K C,
Jin
X, et al.
Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing.
Am J Human Genets,
2013, 93: 249-263
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing&author=Jiang Y&author=Yuen R K C&author=Jin X&publication_year=2013&journal=Am J Human Genets&volume=93&pages=249-263
[23]
Martin
H C,
Kim
G E,
Pagnamenta
A T, et al.
Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis.
Human Mol Genets,
2014, 23: 3200-3211
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis&author=Martin H C&author=Kim G E&author=Pagnamenta A T&publication_year=2014&journal=Human Mol Genets&volume=23&pages=3200-3211
[24]
Willig
L K,
Petrikin
J E,
Smith
L D, et al.
Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings.
Lancet Respiratory Med,
2015, 3: 377-387
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings&author=Willig L K&author=Petrikin J E&author=Smith L D&publication_year=2015&journal=Lancet Respiratory Med&volume=3&pages=377-387
[25]
Gaj
T,
Gersbach
C A,
Barbas Iii
C F.
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.
Trends Biotech,
2013, 31: 397-405
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering&author=Gaj T&author=Gersbach C A&author=Barbas Iii C F&publication_year=2013&journal=Trends Biotech&volume=31&pages=397-405
[26]
Karginov
F V,
Hannon
G J.
The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea.
Mol Cell,
2010, 37: 7-19
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea&author=Karginov F V&author=Hannon G J&publication_year=2010&journal=Mol Cell&volume=37&pages=7-19
[27]
Jinek
M,
Chylinski
K,
Fonfara
I, et al.
A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity.
Science,
2012, 337: 816-821
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity&author=Jinek M&author=Chylinski K&author=Fonfara I&publication_year=2012&journal=Science&volume=337&pages=816-821
[28]
Liang
P,
Xu
Y,
Zhang
X, et al.
CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
Protein Cell,
2015, 6: 363-372
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes&author=Liang P&author=Xu Y&author=Zhang X&publication_year=2015&journal=Protein Cell&volume=6&pages=363-372
[29]
Shalem
O,
Sanjana
N E,
Hartenian
E, et al.
Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells.
Science,
2014, 343: 84-87
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells&author=Shalem O&author=Sanjana N E&author=Hartenian E&publication_year=2014&journal=Science&volume=343&pages=84-87
[30]
Shi
J,
Wang
E,
Milazzo
J P, et al.
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Nat Biotechnol,
2015, 33: 661-667
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains&author=Shi J&author=Wang E&author=Milazzo J P&publication_year=2015&journal=Nat Biotechnol&volume=33&pages=661-667
[31]
Davidson E A, Windram O P, Bayer T S. Building synthetic systems to learn nature’s design principles. Adv Exp Med Biol, 2012, 751: 411–429.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Davidson E A, Windram O P, Bayer T S. Building synthetic systems to learn nature’s design principles. Adv Exp Med Biol, 2012, 751: 411–429&
[32]
Yuan
Y,
Liu
B,
Xie
P, et al.
Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit.
Proc Natl Acad Sci USA,
2015, 112: 3158-3163
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit&author=Yuan Y&author=Liu B&author=Xie P&publication_year=2015&journal=Proc Natl Acad Sci USA&volume=112&pages=3158-3163
[33]
Weinberger
L S,
Burnett
J C,
Toettcher
J E, et al.
Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity.
Cell,
2005, 122: 169-182
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity&author=Weinberger L S&author=Burnett J C&author=Toettcher J E&publication_year=2005&journal=Cell&volume=122&pages=169-182
[34]
Weinberger
L S.
A minimal fate-selection switch.
Curr Opin Cell Biol,
2015, 37: 111-118
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A minimal fate-selection switch&author=Weinberger L S&publication_year=2015&journal=Curr Opin Cell Biol&volume=37&pages=111-118
[35]
Dar
R D,
Hosmane
N N,
Arkin
M R, et al.
Screening for noise in gene expression identifies drug synergies.
Science,
2014, 344: 1392-1396
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Screening for noise in gene expression identifies drug synergies&author=Dar R D&author=Hosmane N N&author=Arkin M R&publication_year=2014&journal=Science&volume=344&pages=1392-1396
[36]
Kang
T,
Moore
R,
Li
Y, et al.
Discriminating direct and indirect connectivities in biological networks.
Proc Natl Acad Sci USA,
2015, 112: 12893-12898
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discriminating direct and indirect connectivities in biological networks&author=Kang T&author=Moore R&author=Li Y&publication_year=2015&journal=Proc Natl Acad Sci USA&volume=112&pages=12893-12898
[37]
Schmiedel
J M,
Klemm
S L,
Zheng
Y, et al.
MicroRNA control of protein expression noise.
Science,
2015, 348: 128-132
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=MicroRNA control of protein expression noise&author=Schmiedel J M&author=Klemm S L&author=Zheng Y&publication_year=2015&journal=Science&volume=348&pages=128-132
[38]
Chen W, Zheng R, Baade P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66: 115–132.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen W, Zheng R, Baade P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66: 115–132&
[39]
Hoadley
K A,
Yau
C,
Wolf
D M, et al.
Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin.
Cell,
2014, 158: 929-944
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin&author=Hoadley K A&author=Yau C&author=Wolf D M&publication_year=2014&journal=Cell&volume=158&pages=929-944
[40]
Hanahan
D,
Weinberg
R A.
Hallmarks of Cancer: The Next Generation.
Cell,
2011, 144: 646-674
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hallmarks of Cancer: The Next Generation&author=Hanahan D&author=Weinberg R A&publication_year=2011&journal=Cell&volume=144&pages=646-674
[41]
,
Weinstein
J N,
Collisson
E A, et al.
The Cancer Genome Atlas Pan-Cancer analysis project.
Nat Genet,
2013, 45: 1113-1120
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Cancer Genome Atlas Pan-Cancer analysis project&author= &author=Weinstein J N&author=Collisson E A&publication_year=2013&journal=Nat Genet&volume=45&pages=1113-1120
[42]
Lawrence
M S,
Stojanov
P,
Mermel
C H, et al.
Discovery and saturation analysis of cancer genes across 21 tumour types.
Nature,
2014, 505: 495-501
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discovery and saturation analysis of cancer genes across 21 tumour types&author=Lawrence M S&author=Stojanov P&author=Mermel C H&publication_year=2014&journal=Nature&volume=505&pages=495-501
[43]
Zack
T I,
Schumacher
S E,
Carter
S L, et al.
Pan-cancer patterns of somatic copy number alteration.
Nat Genet,
2013, 45: 1134-1140
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pan-cancer patterns of somatic copy number alteration&author=Zack T I&author=Schumacher S E&author=Carter S L&publication_year=2013&journal=Nat Genet&volume=45&pages=1134-1140
[44]
McGranahan
N,
Furness
A J S,
Rosenthal
R, et al.
Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.
Science,
2016, 351: 1463-1469
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade&author=McGranahan N&author=Furness A J S&author=Rosenthal R&publication_year=2016&journal=Science&volume=351&pages=1463-1469
[45]
Rubio-Perez
C,
Tamborero
D,
Schroeder
M P, et al.
In Silico Prescription of Anticancer Drugs to Cohorts of 28 Tumor Types Reveals Targeting Opportunities.
Cancer Cell,
2015, 27: 382-396
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=In Silico Prescription of Anticancer Drugs to Cohorts of 28 Tumor Types Reveals Targeting Opportunities&author=Rubio-Perez C&author=Tamborero D&author=Schroeder M P&publication_year=2015&journal=Cancer Cell&volume=27&pages=382-396
[46]
Ding
Z,
Zu
S,
Gu
J.
Evaluating the molecule-based prediction of clinical drug responses in cancer.
Bioinformatics,
2016, 32: 2891-2895
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evaluating the molecule-based prediction of clinical drug responses in cancer&author=Ding Z&author=Zu S&author=Gu J&publication_year=2016&journal=Bioinformatics&volume=32&pages=2891-2895
[47]
Gill
S R,
Pop
M,
Deboy
R T, et al.
Metagenomic Analysis of the Human Distal Gut Microbiome.
Science,
2006, 312: 1355-1359
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metagenomic Analysis of the Human Distal Gut Microbiome&author=Gill S R&author=Pop M&author=Deboy R T&publication_year=2006&journal=Science&volume=312&pages=1355-1359
[48]
Gordon
J I.
Honor Thy Gut Symbionts Redux.
Science,
2012, 336: 1251-1253
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Honor Thy Gut Symbionts Redux&author=Gordon J I&publication_year=2012&journal=Science&volume=336&pages=1251-1253
[49]
Grice
E A,
Segre
J A.
The Human Microbiome: Our Second Genome *.
Annu Rev Genom Hum Genet,
2012, 13: 151-170
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Human Microbiome: Our Second Genome *&author=Grice E A&author=Segre J A&publication_year=2012&journal=Annu Rev Genom Hum Genet&volume=13&pages=151-170
[50]
Turnbaugh
P J,
Hamady
M,
Yatsunenko
T, et al.
A core gut microbiome in obese and lean twins.
Nature,
2009, 457: 480-484
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A core gut microbiome in obese and lean twins&author=Turnbaugh P J&author=Hamady M&author=Yatsunenko T&publication_year=2009&journal=Nature&volume=457&pages=480-484
[51]
Smith
M I,
Yatsunenko
T,
Manary
M J, et al.
Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor.
Science,
2013, 339: 548-554
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor&author=Smith M I&author=Yatsunenko T&author=Manary M J&publication_year=2013&journal=Science&volume=339&pages=548-554
[52]
Wang J, Qi J, Zhao H, et al. Metagenomic sequencing reveals microbiota and its functional potentials associated with periodontal disease. Sci Rep, 2013, 3: 1843.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang J, Qi J, Zhao H, et al. Metagenomic sequencing reveals microbiota and its functional potentials associated with periodontal disease. Sci Rep, 2013, 3: 1843&
[53]
Qin
J,
Li
R,
Raes
J, et al.
A human gut microbial gene catalogue established by metagenomic sequencing.
Nature,
2010, 464: 59-65
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A human gut microbial gene catalogue established by metagenomic sequencing&author=Qin J&author=Li R&author=Raes J&publication_year=2010&journal=Nature&volume=464&pages=59-65
[54]
Qin
J,
Li
Y,
Cai
Z, et al.
A metagenome-wide association study of gut microbiota in type 2 diabetes.
Nature,
2012, 490: 55-60
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A metagenome-wide association study of gut microbiota in type 2 diabetes&author=Qin J&author=Li Y&author=Cai Z&publication_year=2012&journal=Nature&volume=490&pages=55-60
[55]
Sears
C L,
Garrett
W S.
Microbes, Microbiota, and Colon Cancer.
Cell Host Microbe,
2014, 15: 317-328
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microbes, Microbiota, and Colon Cancer&author=Sears C L&author=Garrett W S&publication_year=2014&journal=Cell Host Microbe&volume=15&pages=317-328
[56]
Hsiao
E Y,
McBride
S W,
Hsien
S, et al.
Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders.
Cell,
2013, 155: 1451-1463
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders&author=Hsiao E Y&author=McBride S W&author=Hsien S&publication_year=2013&journal=Cell&volume=155&pages=1451-1463
[57]
Nicholson
J K,
Holmes
E,
Kinross
J, et al.
Host-Gut Microbiota Metabolic Interactions.
Science,
2012, 336: 1262-1267
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Host-Gut Microbiota Metabolic Interactions&author=Nicholson J K&author=Holmes E&author=Kinross J&publication_year=2012&journal=Science&volume=336&pages=1262-1267
[58]
Maurice
C F,
Haiser
H J,
Turnbaugh
P J.
Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome.
Cell,
2013, 152: 39-50
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome&author=Maurice C F&author=Haiser H J&author=Turnbaugh P J&publication_year=2013&journal=Cell&volume=152&pages=39-50
[59]
Yano
J M,
Yu
K,
Donaldson
G P, et al.
Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis.
Cell,
2015, 161: 264-276
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis&author=Yano J M&author=Yu K&author=Donaldson G P&publication_year=2015&journal=Cell&volume=161&pages=264-276
[60]
Borody T J, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroent Hepatol, 2012, 9: 88–96.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Borody T J, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroent Hepatol, 2012, 9: 88–96&
[61]
Methé
B A,
Nelson
K E,
Pop
M, et al.
A framework for human microbiome research.
Nature,
2012, 486: 215-221
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A framework for human microbiome research&author=Methé B A&author=Nelson K E&author=Pop M&publication_year=2012&journal=Nature&volume=486&pages=215-221
[62]
Zhou
X,
Brown
C J,
Abdo
Z, et al.
Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women.
ISME J,
2007, 1: 121-133
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women&author=Zhou X&author=Brown C J&author=Abdo Z&publication_year=2007&journal=ISME J&volume=1&pages=121-133
[63]
Arumugam
M,
Raes
J,
Pelletier
E, et al.
Enterotypes of the human gut microbiome.
Nature,
2011, 473: 174-180
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enterotypes of the human gut microbiome&author=Arumugam M&author=Raes J&author=Pelletier E&publication_year=2011&journal=Nature&volume=473&pages=174-180
[64]
van Opstal
E J,
Bordenstein
S R.
Rethinking heritability of the microbiome.
Science,
2015, 349: 1172-1173
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rethinking heritability of the microbiome&author=van Opstal E J&author=Bordenstein S R&publication_year=2015&journal=Science&volume=349&pages=1172-1173
[65]
Alivisatos
A P,
Blaser
M J,
Brodie
E L, et al.
A unified initiative to harness Earth's microbiomes.
Science,
2015, 350: 507-508
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A unified initiative to harness Earth's microbiomes&author=Alivisatos A P&author=Blaser M J&author=Brodie E L&publication_year=2015&journal=Science&volume=350&pages=507-508
[66]
Dubilier
N,
McFall-Ngai
M,
Zhao
L.
Microbiology: Create a global microbiome effort.
Nature,
2015, 526: 631-634
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microbiology: Create a global microbiome effort&author=Dubilier N&author=McFall-Ngai M&author=Zhao L&publication_year=2015&journal=Nature&volume=526&pages=631-634
[67]
Patti
G J,
Yanes
O,
Siuzdak
G.
Innovation: Metabolomics: the apogee of the omics trilogy.
Nat Rev Mol Cell Biol,
2012, 13: 263-269
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Innovation: Metabolomics: the apogee of the omics trilogy&author=Patti G J&author=Yanes O&author=Siuzdak G&publication_year=2012&journal=Nat Rev Mol Cell Biol&volume=13&pages=263-269
[68]
Jain K K. Role of proteomics in the development of personalized medicine. Adv Protein Chem Struct Biol, 2016, 102: 41–52.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jain K K. Role of proteomics in the development of personalized medicine. Adv Protein Chem Struct Biol, 2016, 102: 41–52&