logo

Chinese Science Bulletin, Volume 62 , Issue 2-3 : 152-166(2017) https://doi.org/10.1360/N972016-00843

Light-driven micro/namomotors: Mechanisms and performances

More info
  • ReceivedJul 30, 2016
  • AcceptedOct 8, 2016
  • PublishedNov 11, 2016

Abstract


Funded by

国家自然科学基金(21274047)


Supplement

补充材料

表S1 光驱动微纳马达的分类及其机理

图S1 液晶弹性体的圆盘微马达示意图和显微镜图

本文以上补充材料见网络版csb.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Purcell E M. Life at low Reynolds number. Am J Phys, 1977, 45: 3-11 CrossRef ADS Google Scholar

[2] Hess H, Bachand G D, Vogel V. Powering Nanodevices with Biomolecular Motors. Chem Eur J, 2004, 10: 2110-2116 CrossRef PubMed Google Scholar

[3] Paxton W F, Kistler K C, Olmeda C C, et al. Catalytic Nanomotors:  Autonomous Movement of Striped Nanorods. J Am Chem Soc, 2004, 126: 13424-13431 CrossRef PubMed Google Scholar

[4] Gao W, Uygun A, Wang J. Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media. J Am Chem Soc, 2012, 134: 897-900 CrossRef PubMed Google Scholar

[5] Gao W, Pei A, Dong R, et al. Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels. J Am Chem Soc, 2014, 136: 2276-2279 CrossRef PubMed Google Scholar

[6] Wong F, Sen A. Progress toward Light-Harvesting Self-Electrophoretic Motors: Highly Efficient Bimetallic Nanomotors and Micropumps in Halogen Media. ACS Nano, 2016, 10: 7172-7179 CrossRef Google Scholar

[7] Dai B, Wang J, Xiong Z, et al. Programmable artificial phototactic microswimmer. Nat Nanotech, 2016, : 1087-1092 CrossRef PubMed ADS Google Scholar

[8] Xuan M, Wu Z, Shao J, et al. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J Am Chem Soc, 2016, 138: 6492-6497 CrossRef PubMed Google Scholar

[9] Wang W, Castro L A, Hoyos M, et al. Autonomous Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano, 2012, 6: 6122-6132 CrossRef PubMed Google Scholar

[10] Peyer K E, Tottori S, Qiu F, et al. Magnetic Helical Micromachines. Chem Eur J, 2013, 19: 28-38 CrossRef PubMed Google Scholar

[11] Li T, Li J, Zhang H, et al. Magnetically Propelled Fish-Like Nanoswimmers. Small, 2016, 12: 6098-6105 CrossRef PubMed Google Scholar

[12] Loget G, Kuhn A. Electric field-induced chemical locomotion of conducting objects. Nat Commun, 2011, 2: 535 CrossRef PubMed ADS Google Scholar

[13] Laocharoensuk R, Burdick J, Wang J. Carbon-Nanotube-Induced Acceleration of Catalytic Nanomotors. ACS Nano, 2008, 2: 1069-1075 CrossRef PubMed Google Scholar

[14] Gao W, Sattayasamitsathit S, Uygun A, et al. Polymer-based tubular microbots: role of composition and preparation. Nanoscale, 2012, 4: 2447-2453 CrossRef PubMed ADS Google Scholar

[15] Li J, Sattayasamitsathit S, Dong R, et al. Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6: 9415-9420 CrossRef PubMed ADS Google Scholar

[16] Gao W, Kagan D, Pak O S, et al. Cargo-Towing Fuel-Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small, 2012, 8: 460-467 CrossRef PubMed Google Scholar

[17] Balasubramanian S, Kagan D, Jack Hu C M, et al. Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angew Chem Int Ed, 2011, 50: 4161-4164 CrossRef PubMed Google Scholar

[18] Wu J, Balasubramanian S, Kagan D, et al. Motion-based DNA detection using catalytic nanomotors. Nat Commun, 2010, 1: 36. Google Scholar

[19] Kagan D, Calvo-Marzal P, Balasubramanian S, et al. Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. J Am Chem Soc, 2009, 131: 12082-12083 CrossRef PubMed Google Scholar

[20] Li J, Singh V V, Sattayasamitsathit S, et al. Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano, 2014, 8: 11118-11125 CrossRef PubMed Google Scholar

[21] Guix M, Orozco J, García M, et al. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6: 4445-4451 CrossRef PubMed Google Scholar

[22] Wang J, Gao W. Nano/Microscale Motors: Biomedical Opportunities and Challenges. ACS Nano, 2012, 6: 5745-5751 CrossRef PubMed Google Scholar

[23] Wu Z, Lin X, Si T, et al. Recent Progress on Bioinspired Self-Propelled Micro/Nanomotors via Controlled Molecular Self-Assembly. Small, 2016, 12: 3080-3093 CrossRef PubMed Google Scholar

[24] Gao W, Wang J. The Environmental Impact of Micro/Nanomachines: A Review. ACS Nano, 2014, 8: 3170-3180 CrossRef PubMed Google Scholar

[25] Moo J G S, Pumera M. Chemical Energy Powered Nano/Micro/Macromotors and the Environment. Chem Eur J, 2015, 21: 58-72 CrossRef PubMed Google Scholar

[26] Dong R F, Ren B Y. Nano/micro motor and its progress in fabrication and applications (in Chinese). J Funct Mater Devices, 2013, 2: 8 [董任峰, 任碧野. 微纳马达及其制备和应用研究进展. 功能材料与器件学报, 2013, 2: 8]. Google Scholar

[27] Shinkai S, Manabe O. Host Guest Complex Chemistry III. Berlin: Springer, 1984. 67. Google Scholar

[28] Bandara H M D, Burdette S C. Photoisomerization in different classes of azobenzene. Chem Soc Rev, 2012, 41: 1809-1825 CrossRef PubMed Google Scholar

[29] Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev, 2014, 43: 148-184 CrossRef PubMed Google Scholar

[30] Waldeck D H. Photoisomerization dynamics of stilbenes. Chem Rev, 1991, 91: 415-436 CrossRef Google Scholar

[31] Irie M, Fukaminato T, Matsuda K, et al. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem Rev, 2014, 114: 12174-12277 CrossRef PubMed Google Scholar

[32] Finkelmann H, Nishikawa E, Pereira G G, et al. A New Opto-Mechanical Effect in Solids. Phys Rev Lett, 2001, 87: 015501 CrossRef PubMed ADS Google Scholar

[33] Kobatake S, Takami S, Muto H, et al. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature, 2007, 446: 778-781 CrossRef PubMed ADS Google Scholar

[34] Orgiu E, Crivillers N, Herder M, et al. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nat Chem, 2012, 4: 675-679 CrossRef PubMed ADS Google Scholar

[35] Gemayel M E, Börjesson K, Herder M, et al. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nat Commun, 2015, 6: 6330 CrossRef PubMed ADS Google Scholar

[36] Göstl R, Senf A, Hecht S. Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution. Chem Soc Rev, 2014, 43: 1982-1996 CrossRef PubMed Google Scholar

[37] Stoll R S, Hecht S. Artificial Light-Gated Catalyst Systems. Angew Chim Int Ed, 2010, 49: 5054-5075 CrossRef PubMed Google Scholar

[38] Fehrentz T, Schönberger M, Trauner D. Optochemical Genetics. Angew Chem Int Ed, 2011, 50: 12156-12182 CrossRef PubMed Google Scholar

[39] Velema W A, Szymanski W, Feringa B L. Photopharmacology: Beyond Proof of Principle. J Am Chem Soc, 2014, 136: 2178-2191 CrossRef PubMed Google Scholar

[40] Monat C, Domachuk P, Eggleton B J. Integrated optofluidics: A new river of light. Nat Photon, 2007, 1: 106-114 CrossRef ADS Google Scholar

[41] Erickson D, Sinton D, Psaltis D. Optofluidics for energy applications. Nat Photon, 2011, 5: 583-590 CrossRef ADS Google Scholar

[42] Monat C, Domachuk P, Grillet C, et al. Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluid Nanofluid, 2008, 4: 81-95 CrossRef Google Scholar

[43] Bléger D, Hecht S. Visible-Light-Activated Molecular Switches. Angew Chem Int Ed, 2015, 54: 11338-11349 CrossRef PubMed Google Scholar

[44] Hong Y, Diaz M, Córdova-Figueroa U M, et al. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Adv Funct Mater, 2010, 20: 1568-1576 CrossRef Google Scholar

[45] Wu Z, Si T, Gao W, et al. Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets. Small, 2016, 12: 577-582 CrossRef PubMed Google Scholar

[46] Maggi C, Saglimbeni F, Dipalo M, et al. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat Commun, 2015, 6: 7855 CrossRef PubMed ADS Google Scholar

[47] Mou F Z, Kong L, Chen C R, et al. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their “on-the-fly” photocatalytic activities. Nanoscale, 2015: 4976–4983. Google Scholar

[48] Duan W, Ibele M, Liu R, et al. Motion analysis of light-powered autonomous silver chloride nanomotors. Eur Phys J E, 2012, 35: 1–8. Google Scholar

[49] Wu Y, Si T, Lin X, et al. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors. Chem Commun, 2015, 51: 511-514 CrossRef PubMed Google Scholar

[50] Mou F, Li Y, Chen C, et al. Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles. Small, 2015, 11: 2564-2570 CrossRef PubMed Google Scholar

[51] Palagi S, Mark A G, Reigh S Y, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater, 2016, 15: 647-653 CrossRef PubMed ADS Google Scholar

[52] Li W, Wu X, Qin H, et al. Light-Driven and Light-Guided Microswimmers. Adv Funct Mater, 2016, 26: 3164-3171 CrossRef Google Scholar

[53] Palacci J, Sacanna S, Vatchinsky A, et al. Photoactivated Colloidal Dockers for Cargo Transportation. J Am Chem Soc, 2013, 135: 15978-15981 CrossRef PubMed Google Scholar

[54] Palacci J, Sacanna S, Steinberg A P, et al. Living Crystals of Light-Activated Colloidal Surfers. Science, 2013, 339: 936-940 CrossRef PubMed ADS Google Scholar

[55] Palacci J, Sacanna S, Kim S H, et al. Light-activated self-propelled colloids. Philos Trans R Soc A-Math Phys Eng Sci, 2014, 372: 20130372-20130372 CrossRef PubMed ADS arXiv Google Scholar

[56] Mou F, Li Y, Chen C, et al. Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles. Small, 2015, 11: 2564-2570 CrossRef PubMed Google Scholar

[57] Li Y, Mou F, Chen C, et al. Light-controlled bubble propulsion of amorphous TiO2 /Au Janus micromotors. RSC Adv, 2016, 6: 10697-10703 CrossRef Google Scholar

[58] Giudicatti S, Marz S M, Soler L, et al. Photoactive rolled-up TiO2 microtubes: fabrication, characterization and applications. J Mater Chem C, 2014, 2: 5892-5901 CrossRef PubMed Google Scholar

[59] Wang W, Duan W, Ahmed S, et al. Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today, 2013, 8: 531-554 CrossRef Google Scholar

[60] Ibele M, Mallouk T E, Sen A. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angew Chem Int Ed, 2009, 48: 3308-3312 CrossRef PubMed Google Scholar

[61] Ebel J P, Anderson J L, Prieve D C. Diffusiophoresis of latex particles in electrolyte gradients. Langmuir, 1988, 4: 396-406 CrossRef Google Scholar

[62] Ibele M E, Lammert P E, Crespi V H, et al. Emergent, Collective Oscillations of Self-Mobile Particles and Patterned Surfaces under Redox Conditions. ACS Nano, 2010, 4: 4845-4851 CrossRef PubMed Google Scholar

[63] Dong R, Zhang Q, Gao W, et al. Highly Efficient Light-Driven TiO2 –Au Janus Micromotors. ACS Nano, 2016, 10: 839-844 CrossRef Google Scholar

[64] Anderson J L. Colloid Transport by Interfacial Forces. Annu Rev Fluid Mech, 1989, 21: 61-99 CrossRef ADS Google Scholar

[65] Xuan M, Wu Z, Shao J, et al. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J Am Chem Soc, 2016, 138: 6492-6497 CrossRef PubMed Google Scholar

[66] Wu Z, Lin X, Wu Y, et al. Near-Infrared Light-Triggered “On/Off” Motion of Polymer Multilayer Rockets. ACS Nano, 2014, 8: 6097-6105 CrossRef PubMed Google Scholar

[67] Liu M, Zentgraf T, Liu Y, et al. Light-driven nanoscale plasmonic motors. Nat Nanotech, 2010, 5: 570-573 CrossRef PubMed ADS Google Scholar

[68] Weissleder R, Tung C H, Mahmood U, et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol, 1999, 17: 375-378 CrossRef PubMed Google Scholar

[69] Xiang H J, Deng Q, An L, et al. Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light. Chem Commun, 2016, 52: 148-151 CrossRef PubMed Google Scholar

[70] Abid J P, Frigoli M, Pansu R, et al. Light-Driven Directed Motion of Azobenzene-Coated Polymer Nanoparticles in an Aqueous Medium. Langmuir, 2011, 27: 7967-7971 CrossRef PubMed Google Scholar

[71] Uchida E, Azumi R, Norikane Y. Light-induced crawling of crystals on a glass surface. Nat Commun, 2015, 6: 7310 CrossRef PubMed ADS Google Scholar

[72] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers. Optics Commun, 2002, 207: 169-175 CrossRef ADS Google Scholar

[73] Grier D G. A revolution in optical manipulation. Nature, 2003, 424: 810-816 CrossRef PubMed ADS Google Scholar

[74] Zhang Q L. The preparation and function regulation of catalytic micromotors (in Chinese). Master Dissertation. Guangzhou: South China University of Technology, 2016 [张启禄. 催化型微纳马达的制备与功能调控. 硕士学位论文. 广州: 华南理工大学, 2016]. Google Scholar

[75] Dong R F. Catalytic micro/nanomotors: Fabrication and performance (in Chinese). Doctor Dissertation. Guangzhou: South China University of Technology, 2016 [董任峰. 催化型微纳马达: 制备与性能. 博士学位论文. 广州: 华南理工大学, 2016]. Google Scholar

[76] Duan W, Liu R, Sen A. Transition between Collective Behaviors of Micromotors in Response to Different Stimuli. J Am Chem Soc, 2013, 135: 1280-1283 CrossRef PubMed Google Scholar

[77] Esplandiu M J, Afshar Farniya A, Bachtold A. Silicon based chemical motors: An efficient pump for triggering and guiding fluid motion using visible light. ACS Nano, 2015, 11234–11240. Google Scholar

[78] Kim Y, Shah A A, Solomon M J. Spatially and temporally reconfigurable assembly of colloidal crystals. Nat Commun, 2014, 5: 3676. Google Scholar

[79] Hernàndez-Navarro S, Tierno P, Farrera J A, et al. Reconfigurable Swarms of Nematic Colloids Controlled by Photoactivated Surface Patterns. Angew Chem, 2014, 126: 10872-10876 CrossRef Google Scholar

[80] Yadav V, Zhang H, Pavlick R, et al. Triggered “On/Off” Micropumps and Colloidal Photodiode. J Am Chem Soc, 2012, 134: 15688-15691 CrossRef PubMed Google Scholar

  • Figure 1

    Controlled motion of the motor proteinskinesin (a) and myosin (b) along microtubule “tracks”and actin filaments[2]

  • Figure 2

    (Color online) Types of non-molecular level solid light dirven micro/nanomotors

  • Figure 3

    (Color online) Schematic of force and gradient of micro/nano particles under illumination. (a) Symmetrical micro/nano sphere under uniform illumination. (b) Janus micro/nano sphere under uniform illumination. (c) Asymmetrical micro/nano sphere under uniform illumination. (d) Symmetrical micro/nano sphere under nonuniform illumination. (e) Schematic of gradient of light driven micro/nanomotors

  • Figure 4

    (Color online) (a) SEM image of the hematite peanut particles. scale bar is 1 μm. Inset shows the direction of the permanent magnetic moment of the particle. (b) Schematic of the hematite particles docking, transporting and releasing[53]. (c) SEM image of (α-Fe2O3)-TPM Janus micromotors[54]. (d) SEM image of TiO2-TPM Janus micromotors. Scale bar is 500 nm[55]. (e) The schematic demonstration of the UV-driven motion of the tublar TiO2 Janus micromotor in the H2O2 solution[56]. (f) The schematic demonstration of the UV-driven motion of the Am-TiO2/Au Janus micromotor in the H2O2 solution[57]

  • Figure 5

    (Color online) (a) Scheme of electrolyte diffusion phoresis of a negatively charged particle near a negatively charged surface[59]. (b) Schematic drawing of electrolyte self-diffusiophoresis of silver chloride microparticles in response to UV light[60]. (c) Electrolyte diffusiophoresis caused by reaction on a TiO2 particle surface[44]

  • Figure 6

    (Color online) (a) Schematic of driven mechanism of light-driven TiO2-Au sphere Janus micromotors[63]. (b) Schematic of driven mechanism of light-driven TiO2-Pt sphere Janus micromotors[47]

  • Figure 7

    (Color online) (a) Schematic of NIR dirven SiO2-Au Janus nanomotor. (b), (c) SEM images of JMSNMs with diameters of 50, 80 nm. Scale bar: 200 nm; (d) the steady-state temperature distribution for a 50-nm JMSNM under 3 W/cm2 NIR irradiation[65]. (e) Schematic of PAH/PSS)20PtNP microengines operated in bioenvironment (blood vessel); (f) EDX mapping, and corresponding SEM image (inset) of the resulting (PAH/PSS)20AuNS rockets. Scale bar: 2 μm; (g) schematic mechanism of NIR-driven rockets. Small arrows represent the inner and outer thermophoretic forces, and the large arrows indicate the direction of the resultant force; (h) the steady distribution of temperature on the rocket[45,66]. (i) Schematic of nano-sized gold gear motor; (j) SEM image of a silica disk including the plasmonic motor; (k) SEM image of a microfabricated gear; (l) the steady distribution of temperature on the gear[46,67]

  • Figure 8

    (Color online) (a) Schematic mechanism of azobenzene-based light driven nanomotor[70]. (b) Schematic structures of the photochromic hyperbranched polymer H40-SP and schematic of UV light induced particle motion[52]. (c) Travelling deformations propel the soft rod through a fluid in a manner that mimics the locomotion of protozoa[51]. (d) Azobenzene-based light driven crystal micromotor. (e) A fivefold pattern of 26 colloidal silica spheres 0.99 μm in diameter is transformed into a circle using dynamic holographic optical tweezers. Right, the original configuration; left, after 16 steps[72]. (f) Optical tweezers use a strongly focused beam of light to trap objects[73]

  • Figure 9

    (Color online) (a) AgCl particles in deionized water. Scale bars, 20 mm[60]. (b) Ag3PO4 MPs transition from schooling to exclusion with UV addition. scale bar, 20 μm[76]. (c) The SiO2-TiO2 Janus particles in deionized water repelled each other when UV is switched on[53]. (d) Schematic mechanism of Si-Pt micropump[77]. (e) Schematic mechanism of ITO-based micropump[78]. (f) Schools of Pt-TiO2 Janus micromotors[47]. (g) Scheme of azobenzene and electrical field-based micropump activated by UV light (365 nm)[79]. (h) Schematic mechanism of photoacid generater based micropump[80]

  • Table 1   Speeds of light driven micro-/nanomotors

    结构

    微纳马达

    环境

    光强(mW/cm2)

    速度(μm/s)

    文献

    Janus

    microspheres

    TiO2-Au

    H2O

    UV, 40

    25

    [63]

    Au-C@WO3

    H2O

    UV, 40

    15

    [74]

    TiO2-Au

    Dyes

    UV, 40

    40

    [75]

    Amorphous TiO2-Au

    15% H2O2

    5% surfactant

    UV, 1

    135

    [57]

    TiO2-Pt

    H2O

    UV, 1

    21

    [47]

    SiO2-Au

    H2O

    NIR, 70.3

    19

    [65]

    a-Fe2O3-TPM

    0.1%~3% H2O2

    5 mmol/L TMAH

    3.4 mmol/L SDS

    Blue light

    15

    [54]

    Rockets

    TiO2

    15% H2O2

    5%TritonX100

    UV, 1

    264

    [56]

    (PSS/PAH)20AuNS

    H2O

    NIR, 20

    158±26

    [45]

    T7AuNS (PAH/PSS)20PtNS

    0.1% H2O2

    NIR, 16.3

    62

    [66]

    其他

    Azobenzene-polymer nanoparticle

    10% PVA

    Blue, 20 mW

    16.9

    [70]

    Spiropyran-microparticle

    H2O:DMSO=1:5

    0.5% NaCl

    UV, 192

    54

    [52]

qqqq

Contact and support