Chinese Science Bulletin, Volume 61 , Issue 30 : 3188-3195(2016) https://doi.org/10.1360/N972016-00728

The evolutionary mechanism of genome size

More info
  • ReceivedJun 23, 2016
  • AcceptedAug 18, 2016
  • PublishedAug 31, 2016



[1] Bak A L, Black F T, Christiansen C, et al. Genome size of mycoplasmal DNA. Nature, 1969, 224: 1209–1210. Google Scholar

[2] Askaa G, Christiansen C, Erno H. Bovine Mycoplasmas: Genome Size and Base Composition of DNA. J General Microbiol, 1973, 75: 283-286 CrossRef Google Scholar

[3] Kelly D C, Avery R J. The DNA content of four small iridescent viruses: Genome size, redundancy, and homology determined by renaturation kinetics. Virology, 1974, 57: 425-435 CrossRef Google Scholar

[4] Pariza M W, Iandolo J J. Determination of genome size of selected typing bacteriophages of Staphylococcus aureus. Appl Microbiol, 1974, 28: 510–512. Google Scholar

[5] Bachmann K. Genome size in mammals. Chromosoma, 1972, 37: 85-93 CrossRef Google Scholar

[6] Bachmann, K. Genome size and animal evolution. Riv Istochim Norm Patol, 1975, 19: 135. Google Scholar

[7] Flavell R B, Bennett M D, Smith J B, et al. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet, 1974, 12: 257-269 CrossRef Google Scholar

[8] Maclean N. Suggested mechanism for increase in size of the genome. Nat New Biol, 1973, 246: 205–206. Google Scholar

[9] Sparrow A H, Nauman A F. Evolution of genome size by DNA doublings. Science, 1976, 192: 524-529 CrossRef ADS Google Scholar

[10] Gregory T R. Animal genome size database, 2013. http: //www.genomesize.com. Google Scholar

[11] Bennett M D, Leitch I J. Plant DNA C-values database, 2012. http: //data.kew.org/cvalues/. Google Scholar

[12] Hedberg M F, Huang Y S, Hommersand M H. Size of the Chloroplast Genome in Codium fragile. Science, 1981, 213: 445-447 CrossRef ADS Google Scholar

[13] Khairallah M M, Adams M W, Sears B B. Mitochondrial genome size variation and restriction fragment length polymorphisms in threePhaseolus species. Theoret Appl Genets, 1991, 82: 321-328 CrossRef Google Scholar

[14] Boussau B, Brown J M, Fujita M K. NONADAPTIVE EVOLUTION OF MITOCHONDRIAL GENOME SIZE. Evolution, 2011, 65: 2706-2711 CrossRef Google Scholar

[15] Rand D M. Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol, 1993, 37: 281–295. Google Scholar

[16] Lagisz M, Poulin R, Nakagawa S. You are where you live: parasitic nematode mitochondrial genome size is associated with the thermal environment generated by hosts. J Evol Biol, 2013, 26: 683-690 CrossRef Google Scholar

[17] Frenkel N, Roizman B. Herpes vimplex virus: genome size and redundancy studied by renaturation kinetics. J Virol, 1971, 8: 591–593. Google Scholar

[18] Chen H, Keseler I M, Shimkets L J. Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis. J Bacteriol, 1990, 172: 4206–4213. Google Scholar

[19] De Vita R, Cavallo D, Eleuteri P, et al. Flow cytometric approach to study genome size variation in eurasiatic green toads of the Bufo viridis complex. Eur J Histochem, 1997, 41(Suppl 2): 175–176. Google Scholar

[20] Chen W, Hasegawa D, Arumuganathan K, et al. Estimation of the Whitefly Bemisia tabaci Genome Size Based on k-mer and Flow Cytometric Analyses. Insects, 2015, 6: 704-715 CrossRef Google Scholar

[21] Callan H G. The organization of genetic units in chromosomes. J Cell Sci, 1967, 2: 1–7. Google Scholar

[22] Crollius H R. Characterization and Repeat Analysis of the Compact Genome of the Freshwater Pufferfish Tetraodon nigroviridis. Genome Res, 2000, 10: 939-949 CrossRef Google Scholar

[23] Jaillon O, Aury J M, Brunet F, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431: 946-957 CrossRef ADS Google Scholar

[24] Fleischmann A, Michael T P, Rivadavia F, et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot, 2014, 114: 1651-1663 CrossRef Google Scholar

[25] Pellicer J, Fay M F, Leitch I J. The largest eukaryotic genome of them all? Bot J Linn Soc, 2010, 164: 10–15. Google Scholar

[26] Parfrey L W, Lahr D J G, Katz L A. The Dynamic Nature of Eukaryotic Genomes. Mol Biol Evolution, 2008, 25: 787-794 CrossRef Google Scholar

[27] Cavalier-Smith T. Skeletal DNA and the Evolution of Genome Size. Annu Rev Biophys Bioeng, 1982, 11: 273-302 CrossRef Google Scholar

[28] Gregory T R. The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates. Blood Cells Molecules Diseases, 2001, 27: 830-843 CrossRef Google Scholar

[29] Gregory T R. A BIRD'S-EYE VIEW OF THE C-VALUE ENIGMA: GENOME SIZE, CELL SIZE, AND METABOLIC RATE IN THE CLASS AVES. Evolution, 2002, 56: 121-130 CrossRef Google Scholar

[30] Roth G, Walkowiak W. The Influence of Genome and Cell Size on Brain Morphology in Amphibians. Cold Spring Harb Perspect Biol, 2015, 7: a019075 CrossRef Google Scholar

[31] Starostova Z, Kratochvil L, Flajshans M. Cell size does not always correspond to genome size: Phylogenetic analysis in geckos questions optimal DNA theories of genome size evolution. Zoology (Jena), 2008, 111: 377–384. Google Scholar

[32] Chipman A D, Khaner O, Haas A, et al. The evolution of genome size: What can be learned from anuran development? J Exp Zool, 2001, 291: 365–374. Google Scholar

[33] Jalal M, Andersen T, Hessen D O. Temperature and developmental responses of body and cell size in Drosophila. Google Scholar

[34] Mueller R L. Genome biology and the evolution of cell-size diversity. Cold Spring Harb Perspect Biol 7, 2015, doi: 10.1101/ cshperspect.a019125. Google Scholar

[35] Gregory T R, Johnston J S. Genome size diversity in the family Drosophilidae. Heredity, 2008, 101: 228-238 CrossRef Google Scholar

[36] Lynch M, Koskella B, Schaack S. Mutation Pressure and the Evolution of Organelle Genomic Architecture. Science, 2006, 311: 1727-1730 CrossRef ADS Google Scholar

[37] Xie P. Critical Reviews and Reconstruction of Evolutionary Theories (in Chinese). Beijing: Science Press, 2016 [谢平. 进化理论之审读与重塑. 北京: 科学出版社, 2016]. Google Scholar

[38] Gupta A, LaBar T, Miyagi M, et al. Evolution of Genome Size in Asexual Digital Organisms. Sci Rep, 2016, 6: 25786 CrossRef ADS arXiv Google Scholar

[39] Sniegowski P D, Gerrish P J, Johnson T, et al. The evolution of mutation rates: separating causes from consequences. Bioessays, 2000, 22: 1057-1066 CrossRef Google Scholar

[40] Lynch M. Evolution of the mutation rate. Trends Genets, 2010, 26: 345-352 CrossRef Google Scholar

[41] Oliver M J, Petrov D, Ackerly D, et al. The mode and tempo of genome size evolution in eukaryotes. Genome Res, 2007, 17: 594-601 CrossRef Google Scholar

[42] Petrov D A, Sangster T A, Johnston J S, et al. Evidence for DNA Loss as a Determinant of Genome Size. Science, 2000, 287: 1060-1062 CrossRef ADS Google Scholar

[43] TeSlaa T, Setoguchi K, Teitell M A. Mitochondria in human pluripotent stem cell apoptosis. Seminars Cell Dev Biol, 2016, 52: 76-83 CrossRef Google Scholar

[44] Hong Y, Cervantes R B, Tichy E, et al. Protecting genomic integrity in somatic cells and embryonic stem cells. Mutation Res/Fundamental Mol Mechanisms Mutagenesis, 2007, 614: 48-55 CrossRef Google Scholar

[45] Blanc G. Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. THE Plant Cell, 2004, 16: 1667-1678 CrossRef Google Scholar

[46] Wang X, Shi X, Hao B, et al. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytologist, 2005, 165: 937-946 CrossRef Google Scholar

[47] Biemont C. Genome size evolution: Within-species variation in genome size. Heredity (Edinb), 2008, 101: 297–298. Google Scholar

[48] Chen J J, Wang Y. Recent progress in plant genome size evolution (in Chinese). Hereditas (Beijing), 2009, 31: 464-470 CrossRef Google Scholar

[49] Nekrutenko A, Li W H. Transposable elements are found in a large number of human protein-coding genes. Trends Genets, 2001, 17: 619-621 CrossRef Google Scholar

[50] Jordan I K, Rogozin I B, Glazko G V, et al. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genets, 2003, 19: 68-72 CrossRef Google Scholar

[51] Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol, 1972, 23: 366–370. Google Scholar

[52] ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) Project. Science, 2004, 306: 636–640. Google Scholar

[53] Dumesic P A, Madhani H D. Recognizing the enemy within: licensing RNA-guided genome defense. Trends Biochem Sci, 2014, 39: 25-34 CrossRef Google Scholar

[54] Shabalina S, Koonin E. Origins and evolution of eukaryotic RNA interference. Trends Ecology Evolution, 2008, 23: 578-587 CrossRef Google Scholar

[55] Siomi M C, Sato K, Pezic D, et al. PIWI-interacting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol, 2011, 12: 246–258. Google Scholar

  • Figure 1

    The frequency distributions of genome sizes of viruses, prokaryotes and eukaryotes

  • 夏晓勤

    1992年毕业于武汉大学生物系; 1997年在中国科学院水生生物研究所获博士学位; 2000年起先后在剑桥大学和美国圣迭戈从事系统生物学、癌症基因组学和生物信息学研究与平台开发; 2011年入选中国科学院“百人计划”研究员, 在水生生物研究所开展水生生物基因组学研究. 研究兴趣涉及细胞代谢网络仿真、高通量组学数据分析、基因芯片数据库与分析平台、鱼类基因组功能注释、草鱼生长性状相关的分子模块耦合分析等方面.


Contact and support