logo

Chinese Science Bulletin, Volume 61 , Issue 30 : 3208-3237(2016) https://doi.org/10.1360/N972016-00604

Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: A review

More info
  • ReceivedMay 15, 2016
  • AcceptedJun 12, 2016
  • PublishedAug 31, 2016

Abstract


Funded by

国家自然科学基金重点项目(51436007)

国家自然科学基金重大项目(51590902)


References

[1] International Energy Agency. World energy outlook 2015. Pairs, 2014. Google Scholar

[2] Lovegrove K, Stein W. Concentrating Solar Power Technology: Principles, Developments and Applications. Cambridge (UK): Woodhead Publishing Limited, 2012. Google Scholar

[3] Armaroli N, Balzani V. Energy for a Sustainable World. Weinheim: Wiley-VCH, 2011. Google Scholar

[4] Margolis R, Coggeshall C, Zuboy J. Sunshot Vision Study. Washington: US Department of Energy, 2012. Google Scholar

[5] Zhang H L, Baeyens J, Degrève J, et al. Concentrated solar power plants: Review and design methodology. Renewable Sustainable Energy Rev, 2013, 22: 466-481 CrossRef Google Scholar

[6] Gui X H, Yuan X G, Song X E, et al. Modelling and simulation of solar dynamic system cell heat pipe receiver (in Chinese). Power Syst Technol, 26: 103–107 [桂晓宏, 袁修干, 宋香娥, 等. 太阳能热动力系统单元热管吸热器建模与仿真. 中国电机工程学报, 2006, 26: 103–107]. Google Scholar

[7] Xiao X, Zhang P, Shao D D, et al. Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector. Energy Conversion Manage, 2014, 86: 49-59 CrossRef Google Scholar

[8] Luz International Limited (LIL). Solar electric generating system IX project description: LIL documentation. Technical Report. Los Angeles, 1990. Google Scholar

[9] Winter C J, Sizman R L, VantHull L L. Solar Power Plants-Fundamentals, Technology, System, Economics. Berlin: Springer, 2012. Google Scholar

[10] Dudley V, Kolb G, Sloan M, et al. SEGS LS2 solar collector—Test results. Technical Report. Albuquerque: Sandia National Labs, 1994. SANDIA94-1884. Google Scholar

[11] Price H, Lüpfert E, Kearney D, et al. Advances in Parabolic Trough Solar Power Technology. J Sol Energy Eng, 2002, 124: 109-125 CrossRef Google Scholar

[12] Reddy V S, Kaushik S C, Ranjan K R, et al. State of the art of solar thermal power plants—A review. Renew Sust Energ Rev, 2013, 27: 258–273. Google Scholar

[13] Delussu G. A qualitative thermo-fluid-dynamic analysis of a CO2 solar pipe receiver. Solar Energy, 2012, 86: 926-934 CrossRef Google Scholar

[14] Massidda L, Varone A. A numerical analysis of a high temperature solar collecting tube using gas as a heat transfer fluid. Technical Report. Pula: Center for Advanced Studies, Research and Development in Sardinia (CRS4), 2007. Google Scholar

[15] Kearney D, Herrmann U, Nava P, et al. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energ-T ASME, 2006, 125: 170–175. Google Scholar

[16] Ruegamer T, Kamp H, Kuckelkorn T, et al. Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects. Energy Procedia, 2014, 49: 1523-1532 CrossRef Google Scholar

[17] Cheng Z D, He Y L, Cui F Q, et al. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Solar Energy, 2012, 86: 1770-1784 CrossRef Google Scholar

[18] Wang Y, Liu Q, Lei J, et al. A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid. Appl Thermal Eng, 2014, 70: 462-476 CrossRef Google Scholar

[19] Riffelmann K J, Neumann A, Ulmer S. Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Solar Energy, 2006, 80: 1303-1313 CrossRef ADS Google Scholar

[20] Lupfert E, Pottler K, Ulmer S, et al. Parabolic trough optical performance analysis techniques. J Sol Energ-T ASME, 2007, 129: 147–152. Google Scholar

[21] Schiricke B, Pitz-Paal R, Lüpfert E, et al. Validation of optical modeling of parabolic trough collectors by flux measurement. In: Proceedings of ASME 2007 Energy Sustainability Conference. New York: American Society of Mechanical Engineers, 2007. 1071–1076. Google Scholar

[22] Schiricke B, Pitz-Paal R, Lüpfert E, et al. Experimental Verification of Optical Modeling of Parabolic Trough Collectors by Flux Measurement. J Sol Energy Eng, 2009, 131: 011004 CrossRef Google Scholar

[23] Jeter S M. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Solar Energy, 1986, 37: 335-345 CrossRef ADS Google Scholar

[24] Jeter S M. Analytical determination of the optical performance of practical parabolic trough collectors from design data. Solar Energy, 1987, 39: 11-21 CrossRef ADS Google Scholar

[25] Daly J C. Solar concentrator flux distributions using backward ray tracing. Appl Opt, 1979, 18: 2696-2699 CrossRef ADS Google Scholar

[26] Grena R. Optical simulation of a parabolic solar trough collector. Int J Sustainable Energy, 2010, 29: 19-36 CrossRef Google Scholar

[27] Wirz M, Roesle M, Steinfeld A. Three-dimensional optical and thermal numerical model of solar tubular receivers. J Sol Energ-T ASME, 2012, 134: 363–373. Google Scholar

[28] Khanna S, Kedare S B, Singh S. Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator. Solar Energy, 2013, 92: 26-40 CrossRef Google Scholar

[29] Christian J M, Ho C K, Christian J M, et al. Finite element modeling and ray tracing of parabolic trough collectors for evaluation of optical intercept factors with gravity loading. In: Proceedings of ASME 2011 Energy Sustainability Conference. New York: American Society of Mechanical Engineers, 2011. 577–585. Google Scholar

[30] Xiao J, He Y L, Cheng Z D, et al. Performance analysis of parabolic trough solar collector (in Chinese). J Eng Thermophys, 2009, 30: 729–733 [肖杰, 何雅玲, 程泽东, 等. 槽式太阳能集热器集热性能分析. 工程热物理学报, 2009 30: 729–733]. Google Scholar

[31] He Y L, Xiao J, Cheng Z D, et al. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy, 2011, 36: 976-985 CrossRef Google Scholar

[32] Cheng Z D, He Y L, Cui F Q. Studies on concentrating solar collectors with a new modelling method and unified MCRT code (in Chinese). Chin Sci Bull (Chin Ver), 2012, 57: 2127-2136 CrossRef Google Scholar

[33] Cheng Z D, He Y L, Xiao J, et al. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass Transfer, 2010, 37: 782-787 CrossRef Google Scholar

[34] Wang K, He Y L, Cheng Z D. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution. Sci China Technol Sci, 2014, 57: 531-540 CrossRef Google Scholar

[35] Cheng Z D, He Y L, Cui F Q. A new modelling method and unified code with MCRT for concentrating solar collectors and its applications. Appl Energy, 2013, 101: 686-698 CrossRef Google Scholar

[36] Cheng Z D, He Y L, Wang K, et al. A detailed parameter study on the comprehensive characteristics and performance of a parabolic trough solar collector system. Appl Thermal Eng, 2014, 63: 278-289 CrossRef Google Scholar

[37] Almanza R, Lentz A, Jiménez G. Receiver behavior in direct steam generation with parabolic troughs. Solar Energy, 1997, 61: 275-278 CrossRef Google Scholar

[38] Kearney D, Kelly B, Herrmann U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy, 2004, 29: 861-870 CrossRef Google Scholar

[39] Aldali Y, Muneer T, Henderson D. Solar absorber tube analysis: thermal simulation using CFD. Int J Low-Carbon Technologies, 2013, 8: 14-19 CrossRef Google Scholar

[40] Muñoz J, Abánades A. Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Appl Energy, 2011, 88: 4139-4149 CrossRef Google Scholar

[41] Moens L, Blake D M. Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers. J Sol Energy Eng, 2010, 132: 031006 CrossRef Google Scholar

[42] Xiong Y X, Wu Y T, Ma C F, et al. Numerical investigation of thermal performance of heat loss of parabolic trough receiver. Sci China Technol Sci, 2010, 53: 444-452 CrossRef Google Scholar

[43] He Y L, Tao W Q. Convective heat transfer enhancement: Mechanism, techniques and performance evaluation. Adv Heat Transfer, 2014, 46: 87–186. Google Scholar

[44] Mwesigye A, Bello-Ochende T, Meyer J P. Heat transfer enhancement in a parabolic trough receiver using wall detached twisted tape inserts. In: Proceedings of 7th International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers, 2013. V06BT7A031–V06BT07A. Google Scholar

[45] Sokhansefat T, Kasaeian A B, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renewable Sustainable Energy Rev, 2014, 33: 636-644 CrossRef Google Scholar

[46] Reddy K, Satyanarayana G. Numerical study of porous finned receiver for solar parabolic trough concentrator. Eng Appl Comp Fluid, 2008, 2: 172–184. Google Scholar

[47] Reddy K S, Kumar K R, Satyanarayana G V. Numerical Investigation of Energy-Efficient Receiver for Solar Parabolic Trough Concentrator. Heat Transfer Eng, 2008, 29: 961-972 CrossRef Google Scholar

[48] Ravi Kumar K, Reddy K S. Thermal analysis of solar parabolic trough with porous disc receiver. Appl Energy, 2009, 86: 1804-1812 CrossRef Google Scholar

[49] Ravi K K, Reddy K. Effect of porous disc receiver configurations on performance of solar parabolic trough concentrator. Heat Mass Transfer, 2012, 48: 555–571. Google Scholar

[50] Mwesigye A, Bello-Ochende T, Meyer J P. Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Appl Energy, 2014, 136: 989-1003 CrossRef Google Scholar

[51] Wang P, Liu D Y, Xu C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams. Appl Energy, 2013, 102: 449-460 CrossRef Google Scholar

[52] Zheng Z J, Li M J, He Y L. Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD. Int J Heat Mass Transfer, 2015, 87: 376-379 CrossRef Google Scholar

[53] He Y L, Zhang Y W. Advances and outlooks of heat transfer enhancement by longitudinal vortex generators. Adv Heat Transfer, 2012, 44: 119–185. Google Scholar

[54] He Y L, Cheng Z D, Tao W Q, et al. A novel parabolic trough solar receiver with unilateral longitudinal vortex generators (in Chinese). PRC Patent, ZL200810231652.0, 2010-06-02 [何雅玲, 程泽东, 陶文铨, 等. 一种单侧多纵向涡强化换热的聚焦槽式太阳能吸热器. 中国专利, ZL200810231652.0, 2010-06-02]. Google Scholar

[55] Cheng Z D, He Y L, Cui F Q. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int J Heat Mass Transfer, 2012, 55: 5631-5641 CrossRef Google Scholar

[56] Flores V, Almanza R. Behavior of the compound wall copper–steel receiver with stratified two-phase flow regimen in transient states when solar irradiance is arriving on one side of receiver. Solar Energy, 2004, 76: 195-198 CrossRef ADS Google Scholar

[57] Tsai C Y, Lin P D. Optimized variable-focus-parabolic-trough reflector for solar thermal concentrator system. Solar Energy, 2012, 86: 1164-1172 CrossRef Google Scholar

[58] Gee R, Winston R. A Non-Imaging Secondary Reflector for Parabolic Trough Concentrators. Technical Report. Golden: National Renewable Energy Laboratory, 2001. Google Scholar

[59] He Y L, Wang K, Li M J, et al. A new parabolic trough solar collector and its design method (in Chinese). PRC Patent, ZL201310162862.X, 2015-08-05 [何雅玲, 王坤, 李明佳, 等. 一种太阳能聚光集热器及其设计方法. 中国专利, ZL201310162862.X, 2015-08-05]. Google Scholar

[60] Häberle A, Zahler C, de Lalaing J, et al. The Solarmundo Project: Advanced technology for solar thermal power generation. In: Proceedings. Google Scholar

[61] of Solar World Congress. Freiburg: ISES, 2001. Google Scholar

[62] Mills D R, Le Lièvre P, Morrison G. Solar Preheating of the Liddell Coal-fired Power plant. In: Proceedings of Australian and New Zealand Solar Energy Society (ANZSES) Annual Conference. Melbourne, 2003. Google Scholar

[63] Bernhard R, Laabs H G, de Lalaing J, et al. Linear Fresnel Collector Demonstration on the PSA. Part I—Design. Google Scholar

[64] Nixon J D, Davies P A. Cost-exergy optimisation of linear Fresnel reflectors. Solar Energy, 2012, 86: 147-156 CrossRef Google Scholar

[65] Rodríguez R M. Nuevos sistemas de potencia para generación termosolar con generación directa de vapor: Caso de éxito de Puerto Errado2. Dyna, 2012, 87: 514–517. Google Scholar

[66] Liu G J, Zuo J, Zheng J T, et al. Performance study of linear Fresnel solar thermal system (in Chinese). Therm Power Genera, 2014, (1): 66–68 [刘冠杰, 左钧, 郑建涛, 等. 菲涅尔式太阳能集热系统性能研究. 热力发电, 2014, (1): 66–68]. Google Scholar

[67] Goswami R P, Negi B S, Sehgal H K, et al. Optical designs and concentration characteristics of a linear Fresnel reflector solar concentrator with a triangular absorber. Solar Energy Mater, 1990, 21: 237-251 CrossRef Google Scholar

[68] Mathur S S, Negi B S, Kandpal T C. Geometrical designs and performance analysis of a linear fresnel reflector solar concentrator with a flat horizontal absorber. Int J Energy Res, 1990, 14: 107-124 CrossRef Google Scholar

[69] Sootha G, Negi B. A comparative study of optical designs and solar flux concentrating characteristics of a linear fresnel reflector solar concentrator with tubular absorber. Solar Energy Mater Solar Cells, 1994, 32: 169-186 CrossRef Google Scholar

[70] Feuermann D, Gordon J M. Analysis of a Two-Stage Linear Fresnel Reflector Solar Concentrator. J Sol Energy Eng, 1991, 113: 272-279 CrossRef Google Scholar

[71] Häberle A, Zahler C, Lerchenmüller H, et al. The solarmundo line focussing Fresnel collector: Optical and thermal performance and cost calculations. In: Proceedings of 11th International Solar Power and Chemical Energy Systems (SolarPACES) Symposium. Zürich, 2002. Google Scholar

[72] Mills D R, Morrison G L. Compact Linear Fresnel Reflector solar thermal powerplants. Solar Energy, 2000, 68: 263-283 CrossRef ADS Google Scholar

[73] Abbas R, Montes M J, Piera M, et al. Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Conversion Manage, 2012, 54: 133-144 CrossRef Google Scholar

[74] Abbas R, Montes M J, Rovira A, et al. Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Solar Energy, 2016, 124: 198-215 CrossRef ADS Google Scholar

[75] Qiu Y, He Y L, Cheng Z D. Optical performance investigation and optimization of a linear Fresnel reflector solar collector (in Chinese). J Eng Thermophys, 2015, 12: 2551–2556 [邱羽, 何雅玲, 程泽东. 线性菲涅尔太阳能系统光学性能研究与优化. 工程热物理学报, 2015, 12: 2551–2556]. Google Scholar

[76] Qiu Y, He Y L, Wu M, et al. A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver. Renewable Energy, 2016, 97: 129-144 CrossRef Google Scholar

[77] Qiu Y, He Y L, Cheng Z D, et al. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Appl Energy, 2015, 146: 162-173 CrossRef Google Scholar

[78] Dey C J. Heat transfer aspects of an elevated linear absorber. Solar Energy, 2004, 76: 243-249 CrossRef ADS Google Scholar

[79] Eck M, Uhlig R, Mertins M, et al. Thermal Load of Direct Steam-Generating Absorber Tubes with Large Diameter in Horizontal Linear Fresnel Collectors. Heat Transfer Eng, 2007, 28: 42-48 CrossRef Google Scholar

[80] Grena R, Tarquini P. Solar linear Fresnel collector using molten nitrates as heat transfer fluid. Energy, 2011, 36: 1048-1056 CrossRef Google Scholar

[81] Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants. Renewable Sustainable Energy Rev, 2013, 23: 12-39 CrossRef Google Scholar

[82] Griffith D T, Moya A C, Ho C K, et al. Structural dynamics testing and analysis for design evaluation and monitoring of heliostats. In: Proceedings of 5th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2011. 567–576. Google Scholar

[83] Yu Q, Wang Z, Xu E. Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field. Appl Energy, 2014, 136: 417-430 CrossRef Google Scholar

[84] Wu Z, Gong B, Wang Z, et al. An experimental and numerical study of the gap effect on wind load on heliostat. Renewable Energy, 2010, 35: 797-806 CrossRef Google Scholar

[85] He Y L, Cui F Q, Cheng Z D, et al. Numerical simulation of solar radiation transmission process for the solar tower power plant: From the heliostat field to the pressurized volumetric receiver. Appl Thermal Eng, 2013, 61: 583-595 CrossRef Google Scholar

[86] Zheng Z J, Li M J, He Y L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux. Appl Energy, 2015, CrossRef Google Scholar

[87] Li X, Kong W, Wang Z, et al. Thermal model and thermodynamic performance of molten salt cavity receiver. Renewable Energy, 2010, 35: 981-988 CrossRef Google Scholar

[88] Cordes S, Haeger M, Meinecke W, et al. Phoebus technology program solar air receiver (TSA), operational experience and test evaluation of the 25 MW volumetric air receiver test facility at the plataforma solar de Almeria. In: Proceedings of 7th International Solar Power and Chemical Energy Systems (SolarPACES) Symposium. Moskau, 1994. Google Scholar

[89] Ávila-Marín A L. Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review. Solar Energy, 2011, 85: 891-910 CrossRef Google Scholar

[90] Kribus A, Doron P, Rubin R, et al. Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1,200°C. J Sol Energy Eng, 2001, 123: 10 CrossRef Google Scholar

[91] Ho C K, Khalsa S S, Gill D, et al. Evaluation of a new tool for heliostat field flux mapping. In: Proceedings of 17th International Solar Power and Chemical Energy Systems (SolarPACES) Symposium. Granada, 2011. Google Scholar

[92] Reilly H E, Kolb G J. An Evaluation of Molten-salt Power Towers Including Results of the Solar Two Project. Technical Report. Albuquerque, Livermore: Sandia National Labs, 2001. SAND2001-3674. Google Scholar

[93] Litwin R Z. Receiver System: Lessons Learned From Solar Two. Technical Report. Canoga Park: Sandia National Labs, 2002. SAND2002-0084. Google Scholar

[94] Bräuning T, Denk T, Pfänder M, et al. Solar-hybrid gas turbine-based power tower systems (REFOS). J Sol Energy Eng-T ASME, 2002, 124: 2–9. Google Scholar

[95] Garcia P, Ferriere A, Bezian J J. Codes for solar flux calculation dedicated to central receiver system applications: A comparative review. Solar Energy, 2008, 82: 189-197 CrossRef ADS Google Scholar

[96] Schwarzbözl P, Pitz-Paal R, Schmitz M. Visual HFLCAL—A software tool for layout and optimization of heliostat fields. In: 15th International Solar Power and Chemical Energy Systems (SolarPACES) Symposium. Berlin, 2009. Google Scholar

[97] Collado F J, Gómez A, Turégano J A. An analytic function for the flux density due to sunlight reflected from a heliostat. Solar Energy, 1986, 37: 215-234 CrossRef ADS Google Scholar

[98] Siala F M F, Elayeb M E. Mathematical formulation of a graphical method for a no-blocking heliostat field layout. Renewable Energy, 2001, 23: 77-92 CrossRef Google Scholar

[99] Wei X, Lu Z, Wang Z, et al. A new method for the design of the heliostat field layout for solar tower power plant. Renewable Energy, 2010, 35: 1970-1975 CrossRef Google Scholar

[100] Leary P, Hankins J. User’s guide for MIRVAL: A Computer Code for Comparing Designs of Heliostat-receiver Optics for Central Receiver Solar Power Plants. Technical Report. Livermore: Sandia National Labs, 1979. SAND-77-8280. Google Scholar

[101] Wendelin T. SolTRACE: A new optical modeling tool for concentrating solar optics. In: Proceedings of ASME 2003 International Solar Energy Conference. New York: American Society of Mechanical Engineers, 2003. 253–260. Google Scholar

[102] Baker A F, Faas S E, Radosevich L G, et al. US-Spain Evaluation of the Solar One and CESA-I Receiver and Storage Systems. Technical Report. Livermore: Sandia National Labs, 1989. SAND-88-8262. Google Scholar

[103] Besarati S M, Yogi Goswami D, Stefanakos E K. Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant. Energy Conversion Manage, 2014, 84: 234-243 CrossRef Google Scholar

[104] Yu Q, Wang Z, Xu E, et al. Modeling and simulation of 1MWe solar tower plant’s solar flux distribution on the central cavity receiver. Simulation Modelling Practice Theor, 2012, 29: 123-136 CrossRef Google Scholar

[105] Cui F Q, He Y L, Cheng Z D, et al. Radiation transmission simulation for volumetric solar receiver by Monte Carlo method (in Chinese). CIESC J, 2011, 62: 60–65 [崔福庆, 何雅玲, 程泽东, 等. 有压腔式吸热器内辐射传播过程的Monte Carlo模拟. 化工学报, 2011, 62: 60–65]. Google Scholar

[106] Cui F Q, He Y L, Li D, et al. Parameter analysis of radiation transmission in volumetric receiver (in Chinese). J Eng Thermophys, 2011, 32: 1375–1378 [崔福庆, 何雅玲, 李东, 等. 塔式吸热器中辐射传播过程的参数分析. 工程热物理学报, 2011, 32: 1375–1378]. Google Scholar

[107] Wang K, He Y L, Qiu Y, et al. A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver. Renewable Energy, 2016, 89: 93-107 CrossRef Google Scholar

[108] He Y L, Cui F Q, Xiao J. A calculation program with Monte Carlo ray tracing method for multiple types of solar collectors (in Chinese). China Software Copyright, Registration number: 2009SR058621, Registration date: 2009.12.17 [何雅玲, 崔福庆, 肖杰. 多种聚光器的蒙特卡罗光线追迹计算软件. 获软件著作权, 登记号: 2009SR058621, 登记日期: 2009.12.17]. Google Scholar

[109] Fang J B, Wei J J, Dong X W, et al. Thermal performance simulation of a solar cavity receiver under windy conditions. Solar Energy, 2011, 85: 126-138 CrossRef Google Scholar

[110] Tu N, Wei J, Fang J. Numerical investigation on uniformity of heat flux for semi-gray surfaces inside a solar cavity receiver. Solar Energy, 2015, 112: 128-143 CrossRef ADS Google Scholar

[111] Cheng Z D, He Y L, Cui F Q. Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT–FVM method. Appl Thermal Eng, 2013, 50: 1044-1054 CrossRef Google Scholar

[112] He Y L, Cheng Z D, Cui F Q, et al. Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling. Renewable Energy, 2012, 44: 368-379 CrossRef Google Scholar

[113] Prairie M R, Pacheco J E, Gilbert R L, et al. Performance of the solar two central receiver power plant. Office Scient Tech Inform, 1998, 9: 181–187. Google Scholar

[114] Wang J N, Li X, Chang C. Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants (in Chinese). Google Scholar

[115] Proc CSEE, 2010, 30: 107–114 [王建楠, 李鑫, 常春. 太阳能塔式热发电站熔融盐吸热器过热故障的影响因素分析. 中国电机工程学报, 2010, 30: 107–114]. Google Scholar

[116] Du B C, He Y L, Zheng Z J, et al. Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver. Appl Thermal Eng, 2016, 99: 741-750 CrossRef Google Scholar

[117] RÃķger M, PfÃĪnder M, Buck R. Multiple air-jet window cooling for high-temperature pressurized volumetric receivers: Testing, evaluation, and modeling. J Sol Energy Eng-T ASME, 2006, 128: 265–274. Google Scholar

[118] Augsburger G, Favrat D. Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant. Solar Energy, 2013, 87: 42-52 CrossRef Google Scholar

[119] Karni J, Kribus A, Rubin R, et al. The “Porcupine”: A Novel High-Flux Absorber for Volumetric Solar Receivers. J Sol Energy Eng, 1998, 120: 85-95 CrossRef Google Scholar

[120] Wang K, He Y L, Qiu Y, et al. Integrated numerical study on the coupled photon-thermal conversion process in the central solar molten salt cavity receiver (in Chinese). Chin Sci Bull, 2016, 61: 1640–1649 [王坤, 何雅玲, 邱羽, 等. 塔式太阳能熔盐腔体吸热器一体化光热耦合模拟研究. 科学通报, 2016, 61: 1640–1649]. Google Scholar

[121] Montes M J, Rovira A, Martínez-Val J M, et al. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers. Appl Thermal Eng, 2012, 35: 220-232 CrossRef Google Scholar

[122] Fang J B, Tu N, Wei J J. Effects of absorber emissivity on thermal performance of a solar cavity receiver. Adv Cond Matter Phys, 2014, 2014: 1–10. Google Scholar

[123] Röger M, Rickers C, Uhlig R, et al. Infrared-reflective coating on fused silica for a solar high-temperature receiver. J Sol Energy Eng-T ASME, 2009, 131: 945–955. Google Scholar

[124] Sánchez-González A, Santana D. Solar flux distribution on central receivers: A projection method from analytic function. Renewable Energy, 2015, 74: 576-587 CrossRef Google Scholar

[125] Tu N, Wei J, Fang J. Numerical study on thermal performance of a solar cavity receiver with different depths. Appl Thermal Eng, 2014, 72: 20-28 CrossRef Google Scholar

[126] Buck R, Barth C, Eck M, et al. Dual-receiver concept for solar towers. Solar Energy, 2006, 80: 1249-1254 CrossRef ADS Google Scholar

[127] Kongtragool B, Wongwises S. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable Sustainable Energy Rev, 2003, 7: 131-154 CrossRef Google Scholar

[128] Li Y Q, He Y L, Wang W W. Optimization of solar-powered Stirling heat engine with finite-time thermodynamics. Renew Energy, 2011, 36: 421–427. Google Scholar

[129] Tlili I, Timoumi Y, Nasrallah S B. Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renewable Energy, 2008, 33: 1911-1921 CrossRef Google Scholar

[130] Xia X L, Dai G L, Shuai Y. Experimental and numerical investigation on solar concentrating characteristics of a sixteen-dish concentrator. Int J Hydrogen Energy, 2012, 37: 18694-18703 CrossRef Google Scholar

[131] Shuai Y, Xia X, Tan H. Numerical simulation and experiment research of radiation performance in a dish solar collector system. Front Energy Power Eng China, 2010, 4: 488-495 CrossRef Google Scholar

[132] Johnston G. Focal region measurements of the 20m2 tiled dish at the Australian National University. Solar Energy, 1998, 63: 117-124 CrossRef Google Scholar

[133] Jaramillo O A, Pérez-Rábago C A, Arancibia-Bulnes C A, et al. A flat-plate calorimeter for concentrated solar flux evaluation. Renewable Energy, 2008, 33: 2322-2328 CrossRef Google Scholar

[134] Steinfeld A, Schubnell M. Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy, 1993, 50: 19-25 CrossRef Google Scholar

[135] Li H, Huang W, Huang F, et al. Optical analysis and optimization of parabolic dish solar concentrator with a cavity receiver. Solar Energy, 2013, 92: 288-297 CrossRef Google Scholar

[136] Dai G L, Xia X L, Sun C, et al. Numerical investigation of the solar concentrating characteristics of 3D CPC and CPC-DC. Solar Energy, 2011, 85: 2833-2842 CrossRef Google Scholar

[137] Cui F, He Y, Cheng Z, et al. Study on combined heat loss of a dish receiver with quartz glass cover. Appl Energy, 2013, 112: 690-696 CrossRef Google Scholar

[138] Cui F Q, He Y L, Cheng Z D, et al. Modeling of the Dish Receiver With the Effect of Inhomogeneous Radiation Flux Distribution. Heat Transfer Eng, 2014, 35: 780-790 CrossRef Google Scholar

[139] He Y L, Cheng Z D, Cui F Q, et al. A design method for complex solar collectors with multiple surfaces expressed by a number equations with different orders (in Chinese). PRC Patent, ZL201110096876.7, 2013-07-17 [何雅玲, 程泽东, 崔福庆, 等. 一种多阶多表面复杂太阳能聚焦集热系统设计方法. 中国专利, ZL201110096876.7, 2013-07-17]. Google Scholar

[140] Cui F Q. Investigation and optimization on solar radiation capture and conversion characteristics for concentrating solar collector subsystems (in Chinese). Dissertation for Doctoral Degree. Xi’an: Xi’an Jiaotong University, 2013 [崔福庆, 太阳能聚光集热系统光捕获与转换过程的光热特性及性能优化研究. 博士学位论文. 西安: 西安交通大学, 2013]. Google Scholar

[141] Li Z, Tang D, Du J, et al. Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility. Appl Thermal Eng, 2011, 31: 1780-1789 CrossRef Google Scholar

[142] Cui F Q, He Y L, Cheng Z D. Numerical simulation of the combined heat loss of a dish receiver under non-homogeneous radiation flux distribution. In: Proceedings of 2011 International Workshop on Heat Transfer Adavances for ENERGY conservation and Pollution Control (IWHT2011). Xi’an, 2011. Google Scholar

[143] Wang F, Shuai Y, Tan H, et al. Thermal performance analysis of porous media receiver with concentrated solar irradiation. Int J Heat Mass Transfer, 2013, 62: 247-254 CrossRef Google Scholar

[144] Wang F, Shuai Y, Tan H, et al. Heat transfer analyses of porous media receiver with multi-dish collector by coupling MCRT and FVM method. Solar Energy, 2013, 93: 158-168 CrossRef Google Scholar

[145] Adkins D R, Andraka C E, Moss T A. Development of a 75-kW heat-pipe receiver for solar heat-engines. In: Proceedings of 9th International Heat Pipe Conference. Albuquerque, 1995. Google Scholar

[146] Tao Y B, He Y L, Cui F Q, et al. Numerical study on coupling phase change heat transfer performance of solar dish collector. Solar Energy, 2013, 90: 84-93 CrossRef Google Scholar

[147] Shuai Y, Xia X L, Tan H P. Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy, 2008, 82: 13-21 CrossRef ADS Google Scholar

[148] Shuai Y, Wang F Q, Xia X L, et al. Radiative properties of a solar cavity receiver/reactor with quartz window. Int J Hydrogen Energy, 2011, 36: 12148–12158. Google Scholar

  • Figure 1

    (Color online) Parabolic trough solar collector

  • Figure 2

    (Color online) Schematic diagram of parabolic trough collecor. (a) Parabolic trough collecor; (b) vacuum receiver

  • Figure 3

    Non-uniform solar flux distribution along the circumference direction tested by CTM method[19]

  • Figure 4

    (Color online) Solar flux distribution on LS-2 solar receiver tube wall[31,34]. (a) Circumferential distribution; (b) 3-D distribution

  • Figure 5

    Solar flux distribution on a bent solar receiver tube wall[28]

  • Figure 6

    (Color online) Temperature distribution on LS-2 solar receiver tube wall[33,34]. (a) Circumferential distribution; (b) 3-D distribution

  • Figure 7

    (Color online) Causes of the non-uniform temperature distribution in parabolic trough collector and corresponding solutions

  • Figure 8

    (Color online) Comparison of temperature distributions on the absorber tube wall[55]. (a) With unilateral longitudinal vortex generators; (b) without unilateral longitudinal vortex generators

  • Figure 9

    (Color online) Parabolic trough collector with homogenizing reflector[34]. (a) Structural schematic diagram; (b) ray path schematic diagram

  • Figure 10

    (Color online) Comparison between conventional parabolic trough collector and parabolic trough collector with homogenizing reflector[34]. (a) Solar flux distribution; (b) temperature distribution

  • Figure 11

    (Color online) Schematic diagram of LFR[60]

  • Figure 12

    (Color online) Typical receivers in LFR system. (a) Single- tube cavity receiver; (b) multiple-tube cavity receiver

  • Figure 13

    (Color online) Ray path and solar flux distribution in single-tube cavity receiver in LFR. (a) Skech of ray path; (b) solar flux distribution on receiver tube surface

  • Figure 14

    (Color online) Solar flux distribution on the absorber tube surface in the single-tube cavity receiver of LFR[74]

  • Figure 15

    (Color online) Solar flux distribution on the absorbing surface in the multiple-tube cavity receiver of the LFR[75]

  • Figure 16

    (Color online) Temperature distribution on the absorber tube wall in the single-tube receiver of LFR[76]

  • Figure 17

    (Color online) Schematic diagram of absorber tube and secondary reflector[79]

  • Figure 18

    (Color online) Relative solar flux distribution on the absorber tube[79]

  • Figure 19

    (Color online) Sketch of a LFR with single-tube cavity receiver and 50 reflectors

  • Figure 20

    (Color online) Comparison of circumferential solar flux distributions on the absorber tube wall using 5 optimized aiming line design schemes[74]

  • Figure 21

    (Color online) Sketch of evacuated tube and CPC[76]

  • Figure 22

    (Color online) LCR distribution on the absorber tube wall[76]

  • Figure 23

    (Color online) Temperature distribution on absorber tube wall in multiple-tube cavity receiver[75]

  • Figure 24

    (Color online) Schematic diagram of heliostat field and central receiver in solar power tower plant

  • Figure 25

    (Color online) Heliostat[82]

  • Figure 26

    (Color online) Tubular solar receiver[85,86]. (a) Cavity receiver; (b) external receiver

  • Figure 27

    (Color online) Volumetric receiver[84]

  • Figure 28

    (Color online) Solar flux distribution on the absorbing surfaces in tubular cavity receiver[90]

  • Figure 29

    (Color online) Solar flux distribution on the aperture of cavity receiver[102]

  • Figure 30

    (Color online) Solar flux distributions on the inner surfaces of cavity receiver at different times[106]

  • Figure 31

    (Color online) Solar flux distribution in the porous absorber of volumetric receiver (summer solstice, noon)[84]

  • Figure 32

    (Color online) Non-uniform temperature distribution of the boiling tubes panels of water/steam cavity receiver[108]

  • Figure 33

    (Color online) Comparison of temperature distributions of absorber tube wall with and without porous insert[85]

  • Figure 34

    (Color online) Porous configurations inserted in the absorber tube[85]

  • Figure 35

    (Color online) Two typical fluid flow layouts in the cavity receiver[118]

  • Figure 36

    (Color online) Comparison of temperature on the absorber surfaces between two fluid flow layouts[118]

  • Figure 37

    Optimized fluid flow layout for cavity receiver[119]

  • Figure 38

    (Color online) Comparion of solar flux distribution on the inner surfaces in cavity receivers with (a) non-optimized solar absorptivity and (b) optimized solar absorptivity[109]

  • Figure 39

    (Color online) Optimal solar flux distribution on the cavity aperture using multple aiming points[102]

  • Figure 40

    (Color online) Comparison of solar flux distributions on inner surfaces of cavity receiver between (a) singgle aiming point and (b) 21 aiming points[82]

  • Figure 41

    (Color online) Comparison of solar flux distributions on external receiver surfaces between (a) single aiming point and (b) multiple aiming points[122]

  • Figure 42

    (Color online) Comparison of solar flux distributions on the absorbing surfaces between cavity receivers with different depths (Δd is the increasement of depth)[123]

  • Figure 43

    (Color online) Schematic diagram of solar dish system[127]

  • Figure 44

    (Color online) Schematic diagram of two typical solar receivers. (a) External receiver; (b) cavity receiver

  • Figure 45

    (Color online) Solar flux distribution on absorbing surfaces for several solar receivers in solar dish system[129]

  • Figure 46

    (Color online) Solar flux distribution on cavity receiver surfaces in solar dish system[136]. (a) Distribution map; (b) local solar flux distribution

  • Figure 47

    (Color online) Temperature distribution on the solar dish cavity receiver surfaces[139]. (a) Schematic diagram of cavity receiver; (b) non-uniform temperature distribution map

  • Figure 48

    (Color online) Temperature distribution of porous absorber in solar dish system[141]. (a) Fluid temperature distribution; (b) solid temperature distribution

  • Figure 49

    Schematic diagram of pear-like receiver for solar dish system[145]

  • Figure 50

    Comparison of solar flux distribution on receiver surfaces between spherical receiver and pear-like receiver[145]

  • Figure 51

    (Color online) Schematic diagram of hemisphere receiver with plano-convex window in solar dish system[146]

  • Figure 52

    (Color online) Comparison of solar flux distribution in several hemisphere receivers in solar dish system[146]

  • Table 1   Parameters of the typical parabolic trough collector

    集热器类型

    LS-1

    LS-2

    LS-3

    Euro-Trough

    DS-1

    聚光器开口宽度 (m)

    2.55

    5

    5.76

    5.76

    5

    聚光器单元长度 (m)

    6.3

    8

    12

    12

    8

    聚光器焦距 (m)

    0.94

    1.49

    1.71

    1.71

    1.49

    吸热管外径 (m)

    0.04

    0.07

    0.07

    0.07

    0.07

    几何聚光比

    61

    71

    82

    82

    71

    聚光器反射率

    0.93

    0.94

    0.94

    0.95

    0.95

    吸收涂层吸收率

    0.94

    0.94

    0.96

    0.96

    0.96

    吸收涂层发射率

    0.30

    0.24

    0.10

    0.10

    0.10

    玻璃套管透射率

    0.95

    0.95

    0.965

    0.965

    0.965

    峰值光学效率

    0.734

    0.737

    0.772

    0.80

    0.80

  • Table 2   Summary of the LFR plants built in the world

    项目名称

    国家

    容量(MW)

    工作参数

    传热流体

    吸热器类型

    投运时间

    Solarmundo

    比利时

    - -

    单管腔式

    2001

    Liddell电站Ⅰ期

    澳大利亚

    1.0

    6.9 MPa, 285℃

    多管腔式

    2004

    FRESDEMO

    西班牙

    0.8

    11 MPa, 450℃

    单管腔式

    2007

    Kimberlina示范电站

    美国

    5.0

    4 MPa, 300℃

    多管腔式

    2008

    Puerto Errado 1

    西班牙

    1.4

    5.5 MPa, 270℃

    单管腔式

    2009

    Puerto Errado 2

    西班牙

    30

    5.5 MPa, 270℃

    单管腔式

    2012

    Liddell电站Ⅱ期

    澳大利亚

    9.0

    5.5 MPa, 270℃

    多管腔式

    2012

    华能南山电厂

    中国

    1.5

    3.5 MPa, >400℃

    单管腔式

    2012

    Augustin Fresnel 1

    法国

    0.25

    10 MPa, 300℃

    单管腔式

    2012

    Dhursar

    印度

    125

    -

    -

    2014

    Rende-CSP

    意大利

    1.0

    280℃

    导热油

    -

    2015

  • Table 3   Five optimized design schemes for the aiming line

    方案

    各反射镜(M)的瞄准线在地面坐标系XgYgZg中的y坐标值yaim (m)

    M1~M5

    M6~M10

    M11~M15

    M16~M20

    M21~M25

    1

    0.00

    0.00

    0.00

    0.00

    0.00

    2

    -0.05

    -0.05

    -0.05

    -0.05

    -0.05

    3

    0.006~-0.15

    0.006~-0.15

    0.006~-0.15

    0.006~-0.15

    0.006~-0.15

    4

    0.15

    0.10

    -0.20

    0.10

    -0.15

    5

    0.11~0.15

    0.11~0.15

    0.09~0.05

    -0.01~-0.05

    0.00

  • Table 4   Summary of solar receiver in solar power tower plants built in the world

    吸热器类型

    电站/吸热器名称

    国家

    吸热管/体材料

    传热流体

    工质出口温度(℃)

    是否承压

    管式

    外露式

    Solar Two

    美国

    316H

    熔融盐

    565

    Solar Tres

    西班牙

    316H

    熔融盐

    565

    德令哈

    中国

    -

    熔融盐

    -

    腔体式

    Solar One

    美国

    316H

    水蒸气

    -

    MSEE

    美国

    -

    熔融盐

    566

    DAHAN

    中国

    316H

    水蒸气

    400

    PS10

    西班牙

    -

    水蒸气

    230

    PS20

    西班牙

    -

    水蒸气

    230

    SSPS

    西班牙

    -

    液态钠

    530

    THEMIS

    法国

    -

    熔融盐

    450

    容积式

    开式

    TSA/Phoebus

    西班牙

    金属丝网

    空气

    950

    SOLAIR

    西班牙

    陶瓷

    空气

    815

    闭式

    CESA-1/REFOS

    西班牙

    陶瓷

    空气

    900

    Consolar/DIAPR

    以色列

    金属丝网

    空气

    1200

  • Table 5   Summary and classification of the methods proposed to tackle the problems caused by non-uniform solar flux distribution in CSP system

    系统形式

    解决方案

    方法分类

    槽式

    优化聚光器结构, 如采用“变焦距”聚光器[57], 均化吸热管表面能流分布

    改善聚光性能

    环形空间增设二次反射装置, 均化吸热管表面能流分布[58]

    改善聚光性能

    调整吸热管位置, 增设二次反射装置, 均化吸热管表面能流分布[34,59]

    改善聚光性能

    采取内置翅片、多孔介质、纵向涡发生器、添加纳米流体等强化换热技术, 提高对流换热性能[13,14,39,40,45~52,54,55]

    改善吸热性能

    采用导热系数大的吸热材料代替不锈钢[13,37,39,56]

    改善吸热性能

    线性菲涅尔式

    优化跟踪聚焦方式, 均化吸热表面能流分布[74,75,78]

    改善聚光性能

    优化主反射镜场, 均化吸热表面能流分布[74,78]

    改善聚光性能

    优化二次反射镜结构, 均化吸热表面能流分布[76,79]

    改善聚光性能

    塔式

    优化聚焦方式, 均化吸热表面能流分布[82,102,122]

    改善聚光性能

    优化光学结构, 如通过优化吸热材料太阳光谱吸收率分布[109,120], 增设红外反射涂层材料[121], 提高辐射能流分布的均匀性

    改善聚光性能

    优化腔体几何结构, 充分利用腔体效应, 提高辐射能流分布的均匀性[123]

    改善聚光性能

    改进吸热器结构, 如增加冷却结构、采取冷却措施[115], 采用针肋状吸热体结构等提高换热性能[117], 采用管式与容积式复合吸热器[124]

    改善吸热性能

    优化布置吸热器管路, 调节传热流体流动[119]

    改善吸热性能

    吸热管内采取强化换热措施, 如插入多孔介质[85]

    改善吸热性能

    碟式

    优化吸热器几何结构, 如采用“梨形”吸热器[145]

    改善聚光性能

    增设光学元件, 如在腔体吸热器进光口增设平凸透镜[146]

    改善聚光性能

    应用热管技术[143]、相变蓄热技术[144]

    改善吸热性能

qqqq

Contact and support