logo

More info
  • ReceivedDec 31, 2018
  • AcceptedFeb 18, 2019
  • PublishedJun 6, 2019

Abstract


Funded by

国家重点研发计划项目(2017YFB0405100,2016YFE0126800)

中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC006)

国家自然科学基金重点项目(61727822,61674148,11604328,51672264)

吉林省科技厅项目(20160520017JH,20170623024TC)


References

[1] Bjelica M, Witzigmann B. Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth. Opt Quant Electron, 2016, 48: 110 CrossRef Google Scholar

[2] Virtanen H, Uusitalo T, Karjalainen M. Narrow-Linewidth 780-nm DFB Lasers Fabricated Using Nanoimprint Lithography. IEEE Photon Technol Lett, 2018, 30: 51-54 CrossRef ADS Google Scholar

[3] Lewoczko-Adamczyk W, Pyrlik C, H¨ager J. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt Express, 2015, 23: 9705-9709 CrossRef PubMed ADS Google Scholar

[4] Liu J G, Wang S L, Chen W. Narrow linewidth distributed-feedback laser with low relative intensity noise. In: Proceedings of the 14th International Conference on Optical Communications and Networks, Nanjing, 2015. 1--3. Google Scholar

[5] Zhao Y, Li Y, Wang Q. 100-Hz Linewidth Diode Laser With External Optical Feedback. IEEE Photon Technol Lett, 2012, 24: 1795-1798 CrossRef ADS Google Scholar

[6] Jia P, Qin L, Chen Y. Broad-stripe single longitudinal mode laser based on metal slots. Optics Commun, 2016, 365: 215-219 CrossRef ADS Google Scholar

[7] Chen Y, Jia P, Zhang J. Gain-coupled distributed feedback laser based on periodic surface anode canals. Appl Opt, 2015, 54: 8863-8866 CrossRef PubMed ADS Google Scholar

[8] Klehr A, Schwertfeger S, Wenzel H, et al. Dynamics of high power gain switched DFB RW laser under high current pulse excitation on a nanosecond time scale. In: Proceedings of International Society for Optics and Photonics (SPIE OPTO), San Francisco, 2013. 86401N-1-86401N-9. Google Scholar

[9] Hai Y N, Zou Y G, Tian K. Research progress of horizontal cavity surface emitting semiconductor lasers. Chin Opt, 2017, 10: 194-206 CrossRef Google Scholar

[10] Kogelnik H, Shank C V. Erratum: Stimulated Emission in a Periodic Structure. Appl Phys Lett, 1971, 18: 408 CrossRef ADS Google Scholar

[11] Nakamura M, Yariv A, Yen H W. Optically pumped GaAs surface laser with corrugation feedback. Appl Phys Lett, 1973, 22: 515-516 CrossRef ADS Google Scholar

[12] Klehr A, Bugge F, Erbert G, et al. High-power broad-area 808nm DFB lasers for pumping solid state laser. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers V, San Jose, 2006. 61330F-1-61330F-10. Google Scholar

[13] Nguyen T P, Schiemangk M, Spie?berger S. Optimization of 780 nm DFB diode lasers for high-power narrow linewidth emission. Appl Phys B, 2012, 108: 767-771 CrossRef ADS Google Scholar

[14] Brox O, Bugge F, Mogilatenko A, et al. Small linewidths 76x nm DFB-laser diodes with optimised two-step epitaxial gratings. In: Proceedings of SPIE - The International Society for Optical Engineering, Brussels, 2014. 9134. Google Scholar

[15] Cayron C, Tran M, Robert Y, et al. Very narrow linewidth of high power DFB laser diode for Cs pumping. In: Proceedings of 2011 Conference on Lasers and Electro-optics Europe, Munich, 2011. 1--2. Google Scholar

[16] Cayron C, Tran M, Robert Y, et al. High power distributed feedback and Fabry-Perot Al-free laser diodes at 780 nm for rubidium pumping. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers X, San Francisco, 2011. 79530A-1-79530A-9. Google Scholar

[17] Matthey R, Gruet F, Affolderbach C, et al. Development and spectral characterisation of ridge DFB laser diodes for Cs optical pumping at 894 nm. In: Proceedings of 2016 European Frequency and Time Forum (EFTF), Univ York, 2016. 1--4. Google Scholar

[18] Spiebberger S, Schiemangk M, Wicht A. Narrow Linewidth DFB Lasers Emitting Near a Wavelength of 1064 nm. J Lightwave Technol, 2010, 28: 2611-2616 CrossRef ADS Google Scholar

[19] Faugeron M, Tran M, Parillaud O. High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth. IEEE Photon Technol Lett, 2013, 25: 7-10 CrossRef ADS Google Scholar

[20] Hou C C, Chen H M, Zhang J C. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 2017, 7: 17170 CrossRef PubMed ADS Google Scholar

[21] Dumitrescu M, Telkkala J, Karinen J, et al. Narrow-linewidth distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings fabricated using nanoimprint lithography. In: Proceedings of Conference on Novel In-plane Semiconductor Lasers X, San Francisco, 2011. 79530B-1-79530B-13. Google Scholar

[22] Hou L P, Haji M, Akbar J. Narrow linewidth laterally coupled 1.55 $\mu$m AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier.. Opt Lett, 2012, 37: 4525-4527 CrossRef PubMed ADS Google Scholar

[23] Dridi K, Benhsaien A, Akrout A, et al. Narrow-linewidth three-electrode regrowth-free semiconductor DFB lasers with uniform surface grating. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 864009-1-864009-7. Google Scholar

[24] Dridi K, Benhsaien A, Zhang J. Narrow Linewidth 1550 nm Corrugated Ridge Waveguide DFB Lasers. IEEE Photon Technol Lett, 2014, 26: 1192-1195 CrossRef ADS Google Scholar

[25] Dridi K, Benhsaien A, Zhang J. Narrow linewidth two-electrode 1560 nm laterally coupled distributed feedback lasers with third-order surface etched gratings. Opt Express, 2014, 22: 19087-19097 CrossRef PubMed ADS Google Scholar

[26] Duan J, Huang H, Lu Z G. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl Phys Lett, 2018, 112: 121102 CrossRef ADS Google Scholar

[27] Shi J X, Qin L, Liu Y. Emission characteristics of surface second-order metal grating distributed feedback semiconductor lasers. Chin Sci Bull, 2012, 57: 2083-2086 CrossRef ADS Google Scholar

[28] Yu H Y, Pan J Q, Shao Y B. 1.82-μm distributed feedback lasers with InGaAs/InGaAsP multiple-quantum wells for a H2O sensing system. Chin Opt Lett, 2013, 11: 031404-31407 CrossRef ADS Google Scholar

[29] Zhai T, Tan S Y, Lu D. High Power 1060 nm Distributed Feedback Semiconductor Laser. Chin Phys Lett, 2014, 31: 024203 CrossRef ADS Google Scholar

[30] Guo F, Zhang R, Lu D. 1.3-μm multi-wavelength DFB laser array fabricated by mocvd selective area growth. Optics Commun, 2014, 331: 165-168 CrossRef ADS Google Scholar

[31] Spießberger S, Schiemangk M, Wicht A. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz. Appl Phys B, 2011, 104: 813-818 CrossRef ADS Google Scholar

[32] Coleman J J, Dias N L, Reddy U, et al. Narrow spectral linewidth surface grating DBR diode lasers. In: Proceedings of the 23rd IEEE International Semiconductor Laser Conference (ISLC), San Diego, 2012. 173--174. Google Scholar

[33] Decker J, Crump P, Fricke J. Narrow Stripe Broad Area Lasers With High Order Distributed Feedback Surface Gratings. IEEE Photon Technol Lett, 2014, 26: 829-832 CrossRef ADS Google Scholar

[34] Feise D, Blume G, Pohl J, et al. Sub-MHz linewidth of 633 nm diode lasers with internal surface DBR gratings. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 86400A-1-86400A-9. Google Scholar

[35] Paschke K, Pohl J, Feise D, et al. Properties of 62x nm red-emitting single-mode diode lasers. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XIII, San Francisco, 2014. 90020A-1-90020A-8. Google Scholar

[36] Virtanen H, Aho A T, Viheriala J. Spectral Characteristics of Narrow-Linewidth High-Power 1180 nm DBR Laser With Surface Gratings. IEEE Photon Technol Lett, 2017, 29: 114-117 CrossRef ADS Google Scholar

[37] Lee T P, Burrus C A, Wilt D P. Measured spectral linewidth of variable-gap cleaved-coupled-cavity lasers. Electron Lett, 1985, 21: 53-54 CrossRef Google Scholar

[38] Gruet F, Bandi T, Mileti G, et al. Development and spectral characterisation of Discrete Mode Laser Diodes (DMLDs) emitting at 780 nm for Rubidium atomic clocks. In: Proceedings of 2011 Conference on Lasers and Electro-optics Europe, Munich, 2011. 1--2. Google Scholar

[39] O'Carroll J, Phelan R, Kelly B, et al. Wide temperature range 0$^{\circ}$C $< T<85^{\circ}$C narrow linewidth discrete mode laser diodes for coherent communications applications. Opt Express, 2011, 19: 90--95. Google Scholar

[40] Phelan R, Gleeson M R, Byrne D C. InGaP/AlGaInP Quantum Well Discrete Mode Laser Diode Emitting at 689 nm. IEEE Photon Technol Lett, 2018, 30: 235-237 CrossRef ADS Google Scholar

[41] Abdullaev A, Lu Q, Guo W H. Linewidth Characterization of Integrable Slotted Single-Mode Lasers. IEEE Photon Technol Lett, 2014, 26: 2225-2228 CrossRef ADS Google Scholar

[42] Yang H, Yang M, Zhao Y. Butterfly Packaged Ultra-Narrow Linewidth Single Frequency Teardrop Laser Diode. IEEE Photon Technol Lett, 2017, 29: 1537-1539 CrossRef ADS Google Scholar

[43] Lu Q, Guo W, Nawrocka M. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19: B140 CrossRef PubMed ADS Google Scholar

[44] Zou L, Wang L, Yu T T, et al. Wavelength tunable laser based on distributed reflectors with deep submicron slots. In: Proceedings of Conference on Photonics North, Montreal, 2012. 84120O1-84120O5. Google Scholar

[45] Wang Y, Yang Y, Zhang S. Narrow Linewidth Single-Mode Slotted Fabry-Pérot Laser Using Deep Etched Trenches. IEEE Photon Technol Lett, 2012, 24: 1233-1235 CrossRef ADS Google Scholar

[46] Yu T, Zou L, Wang L. Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography. Opt Express, 2012, 20: 16291-16299 CrossRef ADS Google Scholar

[47] Mroziewicz B. External cavity wavelength tunable semiconductor lasers — a review. Opto-Electron Rev, 2008, 16: 347-366 CrossRef ADS Google Scholar

[48] Britzger M, Khalaidovski A, Hemb B. External-cavity diode laser in second-order Littrow configuration. Opt Lett, 2012, 37: 3117-3119 CrossRef PubMed ADS Google Scholar

[49] Shin D K, Henson B M, Khakimov R I. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0 - 1.1 μm.. Opt Express, 2016, 24: 27403-27414 CrossRef PubMed ADS arXiv Google Scholar

[50] Bayrakli I. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser. Appl Opt, 2016, 55: 2463-2466 CrossRef PubMed ADS Google Scholar

[51] Bayrakli I. Investigation of double-mode operation and fast fine tuning properties of a grating-coupled external cavity diode laser configuration. Optics Laser Tech, 2017, 87: 7-10 CrossRef ADS Google Scholar

[52] Wei F, Sun Y, Chen D. Tunable External Cavity Diode Laser with a PLZT Electro-Optic Ceramic Deflector. IEEE Photon Technol Lett, 2011, 23: 296-298 CrossRef Google Scholar

[53] Chen W L, Yuan J, Qi X H, et al. Design of 780 nm external cavity semiconductor laser and higher harmonic frequency stabilization. Chinese Journal of Lasers, 2007, 34: 895-900. Google Scholar

[54] Ding D, Lv X Q, Chen X Y. Tunable high-power blue external cavity semiconductor laser. Optics Laser Tech, 2017, 94: 1-5 CrossRef ADS Google Scholar

[55] Li B, Gao J, Yu A. 500 mW tunable external cavity diode laser with narrow line-width emission in blue-violet region. Optics Laser Tech, 2017, 96: 176-179 CrossRef ADS Google Scholar

[56] Chen D J, Fang Z J, Cai H W. Polarization Characteristics of an External Cavity Diode Laser With Littman-Metcalf Configuration. IEEE Photon Technol Lett, 2009, 21: 984-986 CrossRef ADS Google Scholar

[57] Hieta T, Vainio M, Moser C. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Optics Commun, 2009, 282: 3119-3123 CrossRef ADS Google Scholar

[58] Luvsandamdin E, Spießberger S, Schiemangk M. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl Phys B, 2013, 111: 255-260 CrossRef ADS Google Scholar

[59] Christopher H, Arar B, Bawamia A, et al. Narrow linewidth micro-integrated high power diode laser module for deployment in space. In: Proceedings of IEEE International Conference on Space Optical Systems and Applications, Kinawa, 2017. 150--153. Google Scholar

[60] Numata K, Camp J, Krainak M A. Performance of planar-waveguide external cavity laser for precision measurements. Opt Express, 2010, 18: 22781-22788 CrossRef PubMed ADS Google Scholar

[61] Zhao Y, Peng Y, Yang T. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback. Opt Lett, 2011, 36: 34-36 CrossRef PubMed ADS Google Scholar

[62] Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated externalcavitysemiconductor lasers. IEEE J Sel Topics Quantum Electron, 2015, 21: 1--9. Google Scholar

[63] Stern B, Ji X, Dutt A. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett, 2017, 42: 4541-4544 CrossRef PubMed ADS Google Scholar

[64] Cendejas R A, Phillips M C, Myers T L. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector. Opt Express, 2010, 18: 26037-26045 CrossRef PubMed ADS Google Scholar

[65] Aoyama K, Yoshioka R, Yokota N. Optical Negative Feedback for Linewidth Reduction of Semiconductor Lasers. IEEE Photon Technol Lett, 2015, 27: 340-343 CrossRef ADS Google Scholar

[66] Aoyama K, Yokota N, Yasaka H. 3-kHz Spectral Linewidth Laser Assembly With Coherent Optical Negative Feedback. IEEE Photon Technol Lett, 2018, 30: 277-280 CrossRef ADS Google Scholar

[67] Wei F, Yang F, Zhang X. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Opt Express, 2016, 24: 17406-17415 CrossRef PubMed ADS Google Scholar

[68] Zhang L, Wei F, Sun G. Thermal Tunable Narrow Linewidth External Cavity Laser With Thermal Enhanced FBG. IEEE Photon Technol Lett, 2017, 29: 385-388 CrossRef ADS Google Scholar

[69] Yu L, Lu D, Pan B. Widely Tunable Narrow-Linewidth Lasers Using Self-Injection DBR Lasers. IEEE Photon Technol Lett, 2015, 27: 50-53 CrossRef ADS Google Scholar

[70] Li Z S, Lu D, He Y M, et al. Improving the performance of narrow linewidth semiconductor laser through self-injection locking. In: Proceedings of the 30th Annual Conference of the IEEE-Photonics-Society (IPC), Orlando, 2017. 655--656. Google Scholar