References
[1]
Hu Z P, Tian B C. Battlefield application and development trend of drones under informatization conditions. Aerod Missile J, 2011, 10: 63--65.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu Z P, Tian B C. Battlefield application and development trend of drones under informatization conditions. Aerod Missile J, 2011, 10: 63--65&
[2]
Li D R, Li M. Research advance and application prospect of unmannedaerial vehicle remote sensing system. Geomat Inform Sci Wuhan Univ, 2014, 39: 505--513.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li D R, Li M. Research advance and application prospect of unmannedaerial vehicle remote sensing system. Geomat Inform Sci Wuhan Univ, 2014, 39: 505--513&
[3]
Guo S Y. Research on earth observation coverage for multiple unmanned rotorcraft. Dissertation for Master Degree. Hangzhou: Zhejiang University, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo S Y. Research on earth observation coverage for multiple unmanned rotorcraft. Dissertation for Master Degree. Hangzhou: Zhejiang University, 2014&
[4]
Gao J S, Zou Q Y, Chen S D. Research on anti-terrorism of foreign UAV system. In: Proceedings of 2006 China UAV Congress, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao J S, Zou Q Y, Chen S D. Research on anti-terrorism of foreign UAV system. In: Proceedings of 2006 China UAV Congress, 2006&
[5]
Chen T. Design and research on visual positioning and tracking system for the small unmanned helicopter. Dissertation for Master Degree. Hangzhou: Zhejiang University, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen T. Design and research on visual positioning and tracking system for the small unmanned helicopter. Dissertation for Master Degree. Hangzhou: Zhejiang University, 2013&
[6]
Huerta M. Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap. Federal Aviation Administration, Retrieved Dec. 2013, 19: 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huerta M. Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap. Federal Aviation Administration, Retrieved Dec. 2013, 19: 2013&
[7]
Li Y J, Pan Q, Yang F, et al. Multi-source information fusion for sense and avoidance of UAV. In: Proceedings of the 29th Chinese Control Conference, Beijing, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li Y J, Pan Q, Yang F, et al. Multi-source information fusion for sense and avoidance of UAV. In: Proceedings of the 29th Chinese Control Conference, Beijing, 2010&
[8]
Part FAR. 91, General Operating and Flight Rules. Federal Aviation Administration. 1991.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Part FAR. 91, General Operating and Flight Rules. Federal Aviation Administration. 1991&
[9]
Weatherington D, Deputy U. Unmanned aircraft systems roadmap, 2005-2030. Deputy, UAV Planning Task Force, OUSD (AT&L). 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weatherington D, Deputy U. Unmanned aircraft systems roadmap, 2005-2030. Deputy, UAV Planning Task Force, OUSD (AT&L). 2005&
[10]
Verstraeten J, Stuip M, van Birgelen T. Assessment of detect and avoid solutions for use of unmanned aircraft systems in nonsegregated airspace. In: Handbook of Unmanned Aerial Vehicles. Berlin: Springer, 2015. 1955--1979.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Verstraeten J, Stuip M, van Birgelen T. Assessment of detect and avoid solutions for use of unmanned aircraft systems in nonsegregated airspace. In: Handbook of Unmanned Aerial Vehicles. Berlin: Springer, 2015. 1955--1979&
[11]
Angelov P. Sense and Avoid in UAS: Research and Applications. Hoboken: Wiley, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Angelov P. Sense and Avoid in UAS: Research and Applications. Hoboken: Wiley, 2012&
[12]
Billingsley T B. Safety analysis of TCAS on Global Hawk using airspace encounter models. Cambridge: Massachusetts Institute of Technology, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Billingsley T B. Safety analysis of TCAS on Global Hawk using airspace encounter models. Cambridge: Massachusetts Institute of Technology, 2006&
[13]
Sahawneh
L R,
Duffield
M O,
Beard
R W.
Detect and Avoid for Small Unmanned Aircraft Systems Using ADS-B.
Air Traffic Control Q,
2015, 23: 203-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Detect and Avoid for Small Unmanned Aircraft Systems Using ADS-B&author=Sahawneh L R&author=Duffield M O&author=Beard R W&publication_year=2015&journal=Air Traffic Control Q&volume=23&pages=203-240
[14]
Fasano
G,
Accardo
D,
Moccia
A.
Multi-Sensor-Based Fully Autonomous Non-Cooperative Collision Avoidance System for Unmanned Air Vehicles.
J Aerospace Computing Inf Communication,
2008, 5: 338-360
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-Sensor-Based Fully Autonomous Non-Cooperative Collision Avoidance System for Unmanned Air Vehicles&author=Fasano G&author=Accardo D&author=Moccia A&publication_year=2008&journal=J Aerospace Computing Inf Communication&volume=5&pages=338-360
[15]
Lyu Y, Pan Q, Zhao C H, et al. Autonomous stereo vision based collision avoid system for small UAV. In: Proceedings of AIAA Information Systems, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lyu Y, Pan Q, Zhao C H, et al. Autonomous stereo vision based collision avoid system for small UAV. In: Proceedings of AIAA Information Systems, 2017&
[16]
Ozaslan
T,
Loianno
G,
Keller
J.
Autonomous Navigation and Mapping for Inspection of Penstocks and Tunnels With MAVs.
IEEE Robot Autom Lett,
2017, 2: 1740-1747
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Autonomous Navigation and Mapping for Inspection of Penstocks and Tunnels With MAVs&author=Ozaslan T&author=Loianno G&author=Keller J&publication_year=2017&journal=IEEE Robot Autom Lett&volume=2&pages=1740-1747
[17]
Lester T, Cook S, Noth K. USAF Airborne Sense and Avoid (ABSAA) Airworthiness and Operational Approval Approach. 2014. http://www.mitre.org/sites/default/files/publications/usaf-airborne-sense-avoid-13-3116.pdf.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lester T, Cook S, Noth K. USAF Airborne Sense and Avoid (ABSAA) Airworthiness and Operational Approval Approach. 2014. http://www.mitre.org/sites/default/files/publications/usaf-airborne-sense-avoid-13-3116.pdf&
[18]
Dalamagkidis
K,
Valavanis
K P,
Piegl
L A.
Current Status and Future Perspectives for Unmanned Aircraft System Operations in the US.
J Intell Robot Syst,
2008, 52: 313-329
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Current Status and Future Perspectives for Unmanned Aircraft System Operations in the US&author=Dalamagkidis K&author=Valavanis K P&author=Piegl L A&publication_year=2008&journal=J Intell Robot Syst&volume=52&pages=313-329
[19]
Zeitlin A, Lacher A, Kuchar J, et al. Collision avoidance for unmanned aircraft: proving the safety case. JAIDS J Acq Immun Def Synd, 2006, 21: 49--57.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zeitlin A, Lacher A, Kuchar J, et al. Collision avoidance for unmanned aircraft: proving the safety case. JAIDS J Acq Immun Def Synd, 2006, 21: 49--57&
[20]
Accardo
D,
Fasano
G,
Forlenza
L.
Flight Test of a Radar-Based Tracking System for UAS Sense and Avoid.
IEEE Trans Aerosp Electron Syst,
2013, 49: 1139-1160
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flight Test of a Radar-Based Tracking System for UAS Sense and Avoid&author=Accardo D&author=Fasano G&author=Forlenza L&publication_year=2013&journal=IEEE Trans Aerosp Electron Syst&volume=49&pages=1139-1160
[21]
Owen M P, Duffy S M, Edwards M W. Unmanned aircraft sense and avoid radar: surrogate flight testing performance evaluation. In: Proceedings of IEEE Radar Conference, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Owen M P, Duffy S M, Edwards M W. Unmanned aircraft sense and avoid radar: surrogate flight testing performance evaluation. In: Proceedings of IEEE Radar Conference, 2014&
[22]
Newmeyer L, Wilde D, Nelson B, et al. Efficient processing of phased array radar in sense and avoid application using heterogeneous computing. In: Proceedings of the 26th International Conference on Field Programmable Logic and Applications (FPL), 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Newmeyer L, Wilde D, Nelson B, et al. Efficient processing of phased array radar in sense and avoid application using heterogeneous computing. In: Proceedings of the 26th International Conference on Field Programmable Logic and Applications (FPL), 2016&
[23]
Yu H B. Research on the key technology of MMW radar for power line detection. Dissertation for Master Degree. Nanjing: Nanjing University of Science and Technology, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu H B. Research on the key technology of MMW radar for power line detection. Dissertation for Master Degree. Nanjing: Nanjing University of Science and Technology, 2015&
[24]
Geyer C M, Dey D, Singh S. Prototype Sense-and-Avoid System for UAVs. Technical Report CMU-RI-TR-09-09. 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Geyer C M, Dey D, Singh S. Prototype Sense-and-Avoid System for UAVs. Technical Report CMU-RI-TR-09-09. 2009&
[25]
Li J P, Liu K, Li J M, et al. The invention relates to a multi-rotor uav ultrasonic anti-collision system. CN205353698U, 2016-06-29.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J P, Liu K, Li J M, et al. The invention relates to a multi-rotor uav ultrasonic anti-collision system. CN205353698U, 2016-06-29&
[26]
Dey D, Geyer C, Singh S, et al. Passive, long-range detection of aircraft: towards a field deployable sense and avoid system. In: Field and Service Robotics. Berlin: Springer, 2010. 113--123.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dey D, Geyer C, Singh S, et al. Passive, long-range detection of aircraft: towards a field deployable sense and avoid system. In: Field and Service Robotics. Berlin: Springer, 2010. 113--123&
[27]
Lai
J,
Mejias
L,
Ford
J J.
Airborne vision-based collision-detection system.
J Field Robotics,
2011, 28: 137-157
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Airborne vision-based collision-detection system&author=Lai J&author=Mejias L&author=Ford J J&publication_year=2011&journal=J Field Robotics&volume=28&pages=137-157
[28]
Song K T, Huang J H. Fast optical flow estimation and its application to real-time obstacle avoidance. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2001. 2891--2896.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Song K T, Huang J H. Fast optical flow estimation and its application to real-time obstacle avoidance. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2001. 2891--2896&
[29]
Mori T, Scherer S. First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2013. 1750--1757.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mori T, Scherer S. First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2013. 1750--1757&
[30]
Fu
C,
Olivares-Mendez
M A,
Suarez-Fernandez
R.
Monocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers.
J Intell Robot Syst,
2014, 73: 513-533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers&author=Fu C&author=Olivares-Mendez M A&author=Suarez-Fernandez R&publication_year=2014&journal=J Intell Robot Syst&volume=73&pages=513-533
[31]
Heng L, Meier L, Tanskanen P, et al. Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2011. 2472--2477.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Heng L, Meier L, Tanskanen P, et al. Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2011. 2472--2477&
[32]
Hart
P,
Nilsson
N,
Raphael
B.
A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Trans Syst Sci Cyber,
1968, 4: 100-107
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Formal Basis for the Heuristic Determination of Minimum Cost Paths&author=Hart P&author=Nilsson N&author=Raphael B&publication_year=1968&journal=IEEE Trans Syst Sci Cyber&volume=4&pages=100-107
[33]
Li J, Sun X X. A route planning's method for unmanned aerial vehicles based on improved A-Star algorithm. Acta Armament Arii, 2008, 29: 788--792.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J, Sun X X. A route planning's method for unmanned aerial vehicles based on improved A-Star algorithm. Acta Armament Arii, 2008, 29: 788--792&
[34]
Van T J. Development of an autonomous avoidance algorithm for UAVs in general airspace. In: Proceedings of the 1st CEAS European Air and Space Conference, 2007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Van T J. Development of an autonomous avoidance algorithm for UAVs in general airspace. In: Proceedings of the 1st CEAS European Air and Space Conference, 2007&
[35]
Wang
X,
Yadav
V,
Balakrishnan
S N.
Cooperative UAV Formation Flying With Obstacle/Collision Avoidance.
IEEE Trans Contr Syst Technol,
2007, 15: 672-679
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cooperative UAV Formation Flying With Obstacle/Collision Avoidance&author=Wang X&author=Yadav V&author=Balakrishnan S N&publication_year=2007&journal=IEEE Trans Contr Syst Technol&volume=15&pages=672-679
[36]
Saunders J B, Call B, Curtis A, et al. Static and dynamic obstacle avoidance in miniature air vehicles. In: Proceedings of AIAA Infotech, 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Saunders J B, Call B, Curtis A, et al. Static and dynamic obstacle avoidance in miniature air vehicles. In: Proceedings of AIAA Infotech, 2005&
[37]
Lin Y, Saripalli S. Sense and avoid for unmanned aerial vehicles using ADSB. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2015. 6402--6407.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lin Y, Saripalli S. Sense and avoid for unmanned aerial vehicles using ADSB. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2015. 6402--6407&
[38]
Tu J, Yang S X. Genetic algorithm based path planning for a mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation, 2003. 1221--1226.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tu J, Yang S X. Genetic algorithm based path planning for a mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation, 2003. 1221--1226&
[39]
Durand
N.
Neural nets trained by genetic algorithms for collision avoidance.
Appl Intelligence,
2000, 13: 205-213
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural nets trained by genetic algorithms for collision avoidance&author=Durand N&publication_year=2000&journal=Appl Intelligence&volume=13&pages=205-213
[40]
Ma Y H, Zhou D Y. A chaotic genetic algorithm (CGA) for path planning of UAVs. J Northwestern Polytechnical Univ, 2006, 24: 468--471.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma Y H, Zhou D Y. A chaotic genetic algorithm (CGA) for path planning of UAVs. J Northwestern Polytechnical Univ, 2006, 24: 468--471&
[41]
Duan
H,
Zhang
X,
Wu
J.
Max-Min Adaptive Ant Colony Optimization Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and Uncertain Environments.
J Bionic Eng,
2009, 6: 161-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Max-Min Adaptive Ant Colony Optimization Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and Uncertain Environments&author=Duan H&author=Zhang X&author=Wu J&publication_year=2009&journal=J Bionic Eng&volume=6&pages=161-173
[42]
Liu S, Mao L, Yu J. Path planning based on ant colony algorithm and distributed local navigation for multi-robot systems. In: Proceedings of IEEE International Conference on Mechatronics and Automation, 2006. 1733--1738.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu S, Mao L, Yu J. Path planning based on ant colony algorithm and distributed local navigation for multi-robot systems. In: Proceedings of IEEE International Conference on Mechatronics and Automation, 2006. 1733--1738&
[43]
Lu L, Gong D. Robot path planning in unknown environments using particle swarm optimization. In: Proceedings of 4th International Conference on Natural Computation, 2008. 422--426.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu L, Gong D. Robot path planning in unknown environments using particle swarm optimization. In: Proceedings of 4th International Conference on Natural Computation, 2008. 422--426&
[44]
Richards A, How J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of American Control Conference, 2002. 1936--1941.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Richards A, How J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of American Control Conference, 2002. 1936--1941&
[45]
Wang Y, Zhu X P, Zhou Z, et al. UAV path following in 3-D dynamic environment. Robot, 2014, 36: 83--91.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y, Zhu X P, Zhou Z, et al. UAV path following in 3-D dynamic environment. Robot, 2014, 36: 83--91&
[46]
Neunert M, de Crousaz C, Furrer F, et al. Fast nonlinear model predictive control for unified trajectory optimization and tracking. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2016. 1398--1404.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neunert M, de Crousaz C, Furrer F, et al. Fast nonlinear model predictive control for unified trajectory optimization and tracking. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2016. 1398--1404&
[47]
Zhu Y, Zhang T, Song J Y. Path planning for nonholonomic mobile robots using artificial potential field method. Control Theory Appl, 2010, 27: 152--158.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu Y, Zhang T, Song J Y. Path planning for nonholonomic mobile robots using artificial potential field method. Control Theory Appl, 2010, 27: 152--158&
[48]
Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous robot vehicles. Berlin: Springer, 1986. 396--404.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous robot vehicles. Berlin: Springer, 1986. 396--404&
[49]
Dong Z N, Chen Z L, Zhou R, et al. A hybrid approach of virtual force and $A^*$ search algorithm for UAV path replanning. In: Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications, 2011. 1140--1145.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dong Z N, Chen Z L, Zhou R, et al. A hybrid approach of virtual force and $A^*$ search algorithm for UAV path replanning. In: Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications, 2011. 1140--1145&
[50]
Li W. Behavior based control of a mobile robot in unknown environments using fuzzy logicp. Control Theory Appl, 1996, 2: 153--162.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li W. Behavior based control of a mobile robot in unknown environments using fuzzy logicp. Control Theory Appl, 1996, 2: 153--162&
[51]
Han
S C,
Bang
H,
Yoo
C S.
Proportional navigation-based collision avoidance for UAVs.
Int J Control Autom Syst,
2009, 7: 553-565
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proportional navigation-based collision avoidance for UAVs&author=Han S C&author=Bang H&author=Yoo C S&publication_year=2009&journal=Int J Control Autom Syst&volume=7&pages=553-565
[52]
Mujumdar A, Padhi R. Nonlinear geometric guidance and differential geometric guidance of UAVs for reactive collision avoidance. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mujumdar A, Padhi R. Nonlinear geometric guidance and differential geometric guidance of UAVs for reactive collision avoidance. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, 2010&
[53]
Chakravarthy
A,
Ghose
D.
Obstacle avoidance in a dynamic environment: a collision cone approach.
IEEE Trans Syst Man Cybern A,
1998, 28: 562-574
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Obstacle avoidance in a dynamic environment: a collision cone approach&author=Chakravarthy A&author=Ghose D&publication_year=1998&journal=IEEE Trans Syst Man Cybern A&volume=28&pages=562-574
[54]
Carbone C, Ciniglio U, Corraro F, et al. A novel 3D geometric algorithm for aircraft autonomous collision avoidance. In: Proceedings of IEEE Conference on Decision and Control, 2006. 1580--1585.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbone C, Ciniglio U, Corraro F, et al. A novel 3D geometric algorithm for aircraft autonomous collision avoidance. In: Proceedings of IEEE Conference on Decision and Control, 2006. 1580--1585&
[55]
Shanmugavel
M,
Tsourdos
A,
White
B.
Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs.
Control Eng Practice,
2010, 18: 1084-1092
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs&author=Shanmugavel M&author=Tsourdos A&author=White B&publication_year=2010&journal=Control Eng Practice&volume=18&pages=1084-1092
[56]
Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998&
[57]
La
H M,
Lim
R,
Sheng
W.
Multirobot Cooperative Learning for Predator Avoidance.
IEEE Trans Contr Syst Technol,
2015, 23: 52-63
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multirobot Cooperative Learning for Predator Avoidance&author=La H M&author=Lim R&author=Sheng W&publication_year=2015&journal=IEEE Trans Contr Syst Technol&volume=23&pages=52-63
[58]
Hung
S M,
Givigi
S N.
A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment..
IEEE Trans Cybern,
2017, 47: 186-197
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment.&author=Hung S M&author=Givigi S N&publication_year=2017&journal=IEEE Trans Cybern&volume=47&pages=186-197
[59]
Long
P,
Liu
W,
Pan
J.
Deep-Learned Collision Avoidance Policy for Distributed Multiagent Navigation.
IEEE Robot Autom Lett,
2017, 2: 656-663
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-Learned Collision Avoidance Policy for Distributed Multiagent Navigation&author=Long P&author=Liu W&author=Pan J&publication_year=2017&journal=IEEE Robot Autom Lett&volume=2&pages=656-663
[60]
van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multiagent navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2008. 1928--1935.
Google Scholar
http://scholar.google.com/scholar_lookup?title=van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multiagent navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2008. 1928--1935&
[61]
Chen Y F, Liu M, Everett M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2017. 285--292.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Y F, Liu M, Everett M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2017. 285--292&
[62]
Lyu Y, Pan Q, Hu J W, et al. Multi-vehicle flocking control with deep deterministic policy gradient method. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lyu Y, Pan Q, Hu J W, et al. Multi-vehicle flocking control with deep deterministic policy gradient method. 2018,&
[63]
Liang B, Hong B R, Shu G. Research on vision-action model of autonomous robot and obstacle avoiding. Acta Electron Sin, 2003, 31: 2197--2200.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liang B, Hong B R, Shu G. Research on vision-action model of autonomous robot and obstacle avoiding. Acta Electron Sin, 2003, 31: 2197--2200&
[64]
Aguilar W G, Casaliglla V P, Pólit J L, et al. Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Proceedings of International Work-Conference on Artificial Neural Networks, 2017. 575--584.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aguilar W G, Casaliglla V P, Pólit J L, et al. Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Proceedings of International Work-Conference on Artificial Neural Networks, 2017. 575--584&
[65]
Wilson M. Ground-based sense and avoid support for unmanned aircraft systems. In: Proceedings of Congress of the International Council of the Aeronautical Sciences (ICAS), 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wilson M. Ground-based sense and avoid support for unmanned aircraft systems. In: Proceedings of Congress of the International Council of the Aeronautical Sciences (ICAS), 2012&
[66]
Chamberlain L J, Scherer S, Singh S. Self-Aware Helicopters: Full-Scale Automated Landing and Obstacle Avoidance in Unmapped Environments. In: Proceedings of AHS Forum, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chamberlain L J, Scherer S, Singh S. Self-Aware Helicopters: Full-Scale Automated Landing and Obstacle Avoidance in Unmapped Environments. In: Proceedings of AHS Forum, 2011&
[67]
Utt J, McCalmont J, Deschenes M. Development of a sense and avoid system. In: Proceedings of AIAA, 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Utt J, McCalmont J, Deschenes M. Development of a sense and avoid system. In: Proceedings of AIAA, 2005&
[68]
Zarandy A, Nagy Z, Vanek B, et al. A five-camera vision system for UAV visual attitude calculation and collision warning. In: Proceedigns of International Conference on Computer Vision Systems, 2013. 11--20.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zarandy A, Nagy Z, Vanek B, et al. A five-camera vision system for UAV visual attitude calculation and collision warning. In: Proceedigns of International Conference on Computer Vision Systems, 2013. 11--20&
[69]
Miller P C. General atomics successfully tests UAS sense-and-avoid system. Unmanned Aircraft System Magazine, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miller P C. General atomics successfully tests UAS sense-and-avoid system. Unmanned Aircraft System Magazine, 2014&
[70]
Chaumette
F,
Hutchinson
S.
Visual servo control.
IEEE Robot Automat Mag,
2006, 13: 82-90
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Visual servo control&author=Chaumette F&author=Hutchinson S&publication_year=2006&journal=IEEE Robot Automat Mag&volume=13&pages=82-90
[71]
Mnih
V,
Kavukcuoglu
K,
Silver
D.
Human-level control through deep reinforcement learning.
Nature,
2015, 518: 529-533
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Human-level control through deep reinforcement learning&author=Mnih V&author=Kavukcuoglu K&author=Silver D&publication_year=2015&journal=Nature&volume=518&pages=529-533
[72]
Tian J, Shen L C. Research on multi-base multi-UAV cooperative reconnaissance problem. Acta Aeronaut Et Astron Autica Sin, 2007, 28: 913--921.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tian J, Shen L C. Research on multi-base multi-UAV cooperative reconnaissance problem. Acta Aeronaut Et Astron Autica Sin, 2007, 28: 913--921&
[73]
Ye X F. A HRI method based on stereo vision and deep learning for UAV. Dissertation for Master Degree. Tianjin: Tianjin University, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ye X F. A HRI method based on stereo vision and deep learning for UAV. Dissertation for Master Degree. Tianjin: Tianjin University, 2017&
[74]
Alvarez H, Paz L M, Sturm J, et al. Collision avoidance for quadrotors with a monocular camera. In: Experimental Robotics. Berlin: Springer, 2016. 195--209.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alvarez H, Paz L M, Sturm J, et al. Collision avoidance for quadrotors with a monocular camera. In: Experimental Robotics. Berlin: Springer, 2016. 195--209&
[75]
Dey D, Shankar K S, Zeng S, et al. Vision and learning for deliberative monocular cluttered flight. In: Field and Service Robotics. Berlin: Springer, 2016. 391--409.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dey D, Shankar K S, Zeng S, et al. Vision and learning for deliberative monocular cluttered flight. In: Field and Service Robotics. Berlin: Springer, 2016. 391--409&
[76]
Lyu
Y,
Pan
Q,
Zhao
C.
Vision-based UAV collision avoidance with 2D dynamic safety envelope.
IEEE Aerosp Electron Syst Mag,
2016, 31: 16-26
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vision-based UAV collision avoidance with 2D dynamic safety envelope&author=Lyu Y&author=Pan Q&author=Zhao C&publication_year=2016&journal=IEEE Aerosp Electron Syst Mag&volume=31&pages=16-26
[77]
Oleynikova H, Honegger D, Pollefeys M. Reactive avoidance using embedded stereo vision for MAV flight. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2015. 50--56.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Oleynikova H, Honegger D, Pollefeys M. Reactive avoidance using embedded stereo vision for MAV flight. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2015. 50--56&
[78]
McGuire
K,
de Croon
G,
De Wagter
C.
Efficient Optical Flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on an Autonomous Pocket Drone.
IEEE Robot Autom Lett,
2017, 2: 1070-1076
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient Optical Flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on an Autonomous Pocket Drone&author=McGuire K&author=de Croon G&author=De Wagter C&publication_year=2017&journal=IEEE Robot Autom Lett&volume=2&pages=1070-1076
[79]
Iacono
M,
Sgorbissa
A.
Path following and obstacle avoidance for an autonomous UAV using a depth camera.
Robotics Autonomous Syst,
2018, 106: 38-46
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Path following and obstacle avoidance for an autonomous UAV using a depth camera&author=Iacono M&author=Sgorbissa A&publication_year=2018&journal=Robotics Autonomous Syst&volume=106&pages=38-46
[80]
Hu J, Niu Y F, Wang Z C. Obstacle avoidance methods for rotor UAVs using RealSense camera. In: Proceedings of Chinese Automation Congress (CAC), 2017. 7151--7155.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu J, Niu Y F, Wang Z C. Obstacle avoidance methods for rotor UAVs using RealSense camera. In: Proceedings of Chinese Automation Congress (CAC), 2017. 7151--7155&
[81]
Upton E, Halfacree G. Raspberry Pi User Guide. Hoboken: John Wiley and Sons, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Upton E, Halfacree G. Raspberry Pi User Guide. Hoboken: John Wiley and Sons, 2014&
[82]
Weiss A, Rosenthal M, Mazloumian A. Realtime signal processing on NVIDIA TX2 using CUDA. In: Proceedings of Nvidia GPU Technology Conference (GTC), 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weiss A, Rosenthal M, Mazloumian A. Realtime signal processing on NVIDIA TX2 using CUDA. In: Proceedings of Nvidia GPU Technology Conference (GTC), 2018&
[83]
Rabl A, Salner P, Büchi L, et al. Implementation of a capacitive proximity sensor system for a fully maneuverable modular mobile robot to evade humans. In: Proceedings of Austrian Robotics Workshop, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rabl A, Salner P, Büchi L, et al. Implementation of a capacitive proximity sensor system for a fully maneuverable modular mobile robot to evade humans. In: Proceedings of Austrian Robotics Workshop, 2018&
[84]
Grzonka
S,
Grisetti
G,
Burgard
W.
A Fully Autonomous Indoor Quadrotor.
IEEE Trans Robot,
2012, 28: 90-100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Fully Autonomous Indoor Quadrotor&author=Grzonka S&author=Grisetti G&author=Burgard W&publication_year=2012&journal=IEEE Trans Robot&volume=28&pages=90-100
[85]
Mohta
K,
Watterson
M,
Mulgaonkar
Y.
Fast, autonomous flight in GPS-denied and cluttered environments.
J Field Robotics,
2018, 35: 101-120
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fast, autonomous flight in GPS-denied and cluttered environments&author=Mohta K&author=Watterson M&author=Mulgaonkar Y&publication_year=2018&journal=J Field Robotics&volume=35&pages=101-120
[86]
Gageik
N,
Benz
P,
Montenegro
S.
Obstacle Detection and Collision Avoidance for a UAV With Complementary Low-Cost Sensors.
IEEE Access,
2015, 3: 599-609
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Obstacle Detection and Collision Avoidance for a UAV With Complementary Low-Cost Sensors&author=Gageik N&author=Benz P&author=Montenegro S&publication_year=2015&journal=IEEE Access&volume=3&pages=599-609