SCIENTIA SINICA Informationis, Volume 50 , Issue 2 : 289-302(2020) https://doi.org/10.1360/N112018-00247

A memristor-CMOS-based general-logic circuit and its applications

More info
  • ReceivedSep 10, 2018
  • AcceptedMar 21, 2019
  • PublishedFeb 12, 2020


Funded by







[1] Chua L O. Memristor-The missing circuit element. IEEE Trans Circuit Theor, 1971, 18: 507-519 CrossRef Google Scholar

[2] Strukov D B, Snider G S, Stewart D R. The missing memristor found. Nature, 2008, 453: 80-83 CrossRef PubMed ADS Google Scholar

[3] Williams R. How We Found The Missing Memristor. IEEE Spectr, 2008, 45: 28-35 CrossRef Google Scholar

[4] Biolek Z, Biolek D, Biolkova V, et al. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, 18: 210--214. Google Scholar

[5] Vourkas I, Batsos A, Sirakoulis G C. SPICE modeling of nonlinear memristive behavior. Int J Circ Theor Appl, 2015, 43: 553-565 CrossRef Google Scholar

[6] Emara A, Ghoneima M, El-Dessouky M. Differential 1T2M memristor memory cell for single/multi-bit RRAM modules. In: Proceedings of the 6th Computer Science and Electronic Engineering Conference (CEEC), Colchester, 2014. 69--72. Google Scholar

[7] Shaarawy N, Ghoneima M, Radwan A G. 2T2M memristor-based memory cell for higher stability RRAM modules. In: Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015. 1418--1421. Google Scholar

[8] Sarwar S S, Saqueb S A N, Quaiyum F. Memristor-Based Nonvolatile Random Access Memory: Hybrid Architecture for Low Power Compact Memory Design. IEEE Access, 2013, 1: 29-34 CrossRef Google Scholar

[9] Duan S K, Hu X F, Wang L D, et al. Memristor-based RRAM with applications. Sci Sin Inform, 2012, 42: 754--769. Google Scholar

[10] Jiang Z, Duan S, Wang L, et al. A threshold adaptive memristor model analysis with application in image storage. In: Proceedings of International Conference on Information Science and Technology, 2015. 449--454. Google Scholar

[11] Duan S K, Hu X F, Wang L D. Memristor-based RRAM with applications. Sci China Inf Sci, 2012, 55: 1446-1460 CrossRef Google Scholar

[12] Hu X F, Duan S K, Wang L D. Memristive multilevel memory with applications in audio signal storage. In: Artificial Intelligence and Computational Intelligence. Berlin: Springer, 2011. 228--235. Google Scholar

[13] Luo L, Hu X, Duan S. Multiple memristor series-parallel connections with use in synaptic circuit design. IET Circ Dev Syst, 2017, 11: 123-134 CrossRef Google Scholar

[14] Dong Z, Qi D, He Y. Easily Cascaded Memristor-CMOS Hybrid Circuit for High-Efficiency Boolean Logic Implementation. Int J Bifurcation Chaos, 2018, 28: 1850149 CrossRef ADS Google Scholar

[15] Dong Z K, He Y F, Hu X F, et al. A Flexible Memristor-based Logic Unit Circuit and its Network Integration for Boolean Logic Implementation. IET Nanodielectrics, 2019. Google Scholar

[16] Zhang Y, Shen Y, Wang X. A Novel Design for Memristor-Based Logic Switch and Crossbar Circuits. IEEE Trans Circuits Syst I, 2015, 62: 1402-1411 CrossRef Google Scholar

[17] Zhang Y, Shen Y, Wang X. A Novel Design for a Memristor-Based or Gate. IEEE Trans Circuits Syst II, 2015, 62: 781-785 CrossRef Google Scholar

[18] Lehtonen E, Laiho M. Stateful implication logic with memristors. In: Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures, Nanoarch, 2009. 33--36. Google Scholar

[19] Borghetti J, Snider G S, Kuekes P J. `Memristive' switches enable `stateful' logic operations via material implication. Nature, 2010, 464: 873-876 CrossRef PubMed ADS Google Scholar

[20] Kvatinsky S, Satat G, Wald N. Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies. IEEE Trans VLSI Syst, 2014, 22: 2054-2066 CrossRef Google Scholar

[21] Kvatinsky S, Wald N, Satat G, et al. MRL - memristor ratioed logic. In: Proceedings of IEEE International Workshop on Cellular Nanoscale Networks and Their Applications, 2012. 1--6. Google Scholar

[22] Guckert L, Swartzlander E E. MAD Gates-Memristor Logic Design Using Driver Circuitry. IEEE Trans Circuits Syst II, 2017, 64: 171-175 CrossRef Google Scholar

[23] Teimoori M, Ahmadi A, Alirezaee S, et al. A novel hybrid CMOS-memristor logic circuit using memristor ratioed logic. In: Proceedings of IEEE Electrical and Computer Engineering, 2016. Google Scholar

[24] Teimoory M, Amirsoleimani A, Ahmadi A, et al. A hybrid memristor-CMOS multiplier design based on memristive universal logic gates. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems, 2017. 1422--1425. Google Scholar

[25] Xia Q, Robinett W, Cumbie M W. Memristor-CMOS Hybrid Integrated Circuits for Reconfigurable Logic. Nano Lett, 2009, 9: 3640-3645 CrossRef PubMed ADS Google Scholar

[26] Zhou Y, Li Y, Xu L. A hybrid memristor-CMOS XOR gate for nonvolatile logic computation. Phys Status Solidi A, 2016, 213: 1050-1054 CrossRef ADS Google Scholar

[27] Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern, 1979, 9: 62-66 CrossRef Google Scholar

  • Figure 1

    Proposed general logic circuits

  • Figure 2

    (Color online) The simulation result of proposed general logic circuit. (a) $V_{a}=~V_{L}=~``0",~V_{b}=~V_{L}=~``0"$; protectłinebreak (b) $V_{a}=~V_{L}=~``0",~V_{b}=~V_{H}=~``1"$; (c) $V_{a}=~V_{H}=~``1",~V_{b}=~V_{L}=~``0"$; (d) $V_{a}=~V_{H}=~``1",~V_{b}=~V_{H}=~``1"$

  • Figure 3

    Proposed memristor-CMOS hybrid full adder

  • Figure 4

    (Color online) The simulation results of memristor-CMOS hybrid full adder when $V_{\rm~cin}=V_{L}$. (a) $V_{A}=V_{L}$, $V_{B}=V_{L}$; (b) $V_{A}=V_{L}$, $V_{B}=V_{H}$; (c) $V_{A}=V_{H}$, $V_{B}=V_{L}$; (d) $V_{A}=V_{H}$, $V_{B}=V_{H}$

  • Figure 5

    (Color online) The simulation results of memristor-CMOS hybrid full adder when $V_{\rm~cin}=V_{L}$. (a) $V_{A}=V_{L}$, $V_{B}=V_{L}$; (b) $V_{A}=V_{L}$, $V_{B}=V_{H}$; (c) $V_{A}=V_{H}$, $V_{B}=V_{L}$; (d) $V_{A}=V_{H}$, $V_{B}=V_{H}$

  • Figure 6

    Proposed encryption cell based general logic circuit

  • Figure 7

    Proposed encryption circuit for binary image

  • Figure 8

    (Color online) Original imagematrix and key matrix. (a) Numeric “5" matrix; (b) key matrix

  • Figure 9

    (Color online) Encryption and decryption process

  • Figure 10

    Original Lena image and key

  • Figure 11

    Encryption and decryption process for Lena image

  • Table 1   Implementation process of proposed general logic circuit
    Logic Truth table Input Node voltage Output
    $a$ $b$
    AND 0 0$\to~$0 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    0 1$\to$0 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{L}$$\to$Logic“0”
    1 0$\to$0 $V_{H}$ $V_{L}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{L}$$\to$Logic“0”
    1 1$\to$1 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
    OR 0 0$\to$0 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    0 1$\to$1 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 0$\to$1 $V_{H}$ $V_{L}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 1$\to$1 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
    XOR 0 0$\to$0 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    0 1$\to$1 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 0$\to$1 $V_{H}$ $V_{L}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{H}$$\to$Logic“1”
    1 1$\to$0 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{L}$$\to$Logic“0”
    XNOR 0 0$\to$1 $V_{L}$ $V_{L}$ $X_1$$\to$$V_{L}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
    0 1$\to$0 $V_{L}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{L}$, $X_3$$\to$$V_{H}$, $X_4$$\to$$V_{L}$ $V_{L}$$\to$Logic“0”
    1 0$\to$0 $V_{H}$ $V_{L}$ $X_1\to~V_{H}$, $X_2\to~V_{L}$, $X_3\to~V_{H}$, $X_4\to~V_{L}$ $V_{L}\to$Logic“0”
    1 1$\to$1 $V_{H}$ $V_{H}$ $X_1$$\to$$V_{H}$, $X_2$$\to$$V_{H}$, $X_3$$\to$$V_{L}$, $X_4$$\to$$V_{H}$ $V_{H}$$\to$Logic“1”
  • Table 2   Several logic circuits' performance for implementation of AND-OR-XOR-XNOR logic
    Logic circuits Components Generalized Power estimation Circuit design constraints Cascading
    Proposed general 4 memristors Excellent 1.592 mW Low Excellent
    logic circuit 4 MOSFETs
    13 memristors
    MAD Gates 13 resistors Normal 4.306 mW High Normal
    7 switches
    MRL 16 memristors Normal 6.312 mW Low Excellent
    10 MOSFETs
    IMPLY 18 memristors Normal 12.490 mW High Normal
    4 resistors
    Hybrid CMOS 8 memristors Good 3.183 mW Low Excellent
    4 MOSFETs
  • Table 3   The truth table of full adder
    Carry voltage Input Output
    $V_{A}$ $V_{B}$
    $V_{\rm~cin}~\to~V_{L}$ $V_{L}$ $V_{L}$ $V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{L}$ $V_{H}$ $V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{H}$ $V_{L}$ $V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{H}$ $V_{H}$ $V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{H}$
    $V_{\rm~cin}$ $\to$ $V_{H}$ $V_{L}$ $V_{L}$ $V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{L}$
    $V_{L}$ $V_{H}$ $V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{H}$
    $V_{H}$ $V_{L}$ $V_{\rm~sum}$ $\to$ $V_{L}$, $V_{\rm~cout}$ $\to$ $V_{H}$
    $V_{H}$ $V_{H}$ $V_{\rm~sum}$ $\to$ $V_{H}$, $V_{\rm~cout}$ $\to$ $V_{H}$
  • Table 4   Comparison of the components required by the proposed circuits and prior work for $N$-bit adder
    MAD Gates MRL IMPLY Proposed general logic circuit
    Components $8N$ memristors $18N$ memristors $7N+1$ memristors $4N~$ memristors
    $2N+3$ drivers $3N$ drivers $7N$ drivers $2N+1$ drivers
    $9N$ resistors $4N$ MOSFETs $~N$ resistors $8N$ MOSFETs
    $14N$ switches $8N-1$ switches