北京市科委基金(D171100003717003)
[1] Gibaja E, Ventura S. Multi-label learning: a review of the state of the art and ongoing research. WIREs Data Min Knowl Discov, 2014, 4: 411-444 CrossRef Google Scholar
[2] Zhang M L, Zhou Z H. A Review on Multi-Label Learning Algorithms. IEEE Trans Knowl Data Eng, 2014, 26: 1819-1837 CrossRef Google Scholar
[3] Boutell M R, Luo J, Shen X. Learning multi-label scene classification. Pattern Recognition, 2004, 37: 1757-1771 CrossRef Google Scholar
[4] Read J, Pfahringer B, Holmes G. Classifier chains for multi-label classification. Mach Learn, 2011, 85: 333-359 CrossRef Google Scholar
[5] Fürnkranz J, Hüllermeier E, Loza Mencía E. Multilabel classification via calibrated label ranking. Mach Learn, 2008, 73: 133-153 CrossRef Google Scholar
[6] Tsoumakas G, Katakis I, Vlahavas I. Random k-Labelsets for Multilabel Classification. IEEE Trans Knowl Data Eng, 2011, 23: 1079-1089 CrossRef Google Scholar
[7] Zhang M L, Zhou Z H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007, 40: 2038-2048 CrossRef Google Scholar
[8] Clare A, King R D. Knowledge Discovery in Multi-label Phenotype Data. In: Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery. Berlin: Springer, 2001. 2168: 42--53. Google Scholar
[9] Elisseeff A, Weston J. A kernel method for multi-labelled classification. In: Proceedings of International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge: MIT Press, 2001. 681--687. Google Scholar
[10] Ghamrawi N, McCallum A. Collective multi-label classification. In: Proceedings of the 14th ACM international conference on Information and knowledge management. New York: ACM, 2005. 195--200. Google Scholar
[11] Berger M J. Large Scale Multi-Label Text Classification With Semantic Word Vectors. Technical report, Stanford University, 2015. Google Scholar
[12] Kurata G, Xiang B, Zhou B. Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016. 521--526. Google Scholar
[13] Chen G, Ye D, Xing Z, et al. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization. In: International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2017. 2377--2383. Google Scholar
[14] Zhang W, Yan J, Wang X, et al. Deep Extreme Multi-label Learning. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. New York: ACM, 2018. 100--107. Google Scholar
[15] Wright J, Yang A Y, Ganesh A. Robust face recognition via sparse representation.. IEEE Trans Pattern Anal Mach Intell, 2009, 31: 210-227 CrossRef PubMed Google Scholar
[16] Yang M, Zhang L, Yang J, et al. Metaface learning for sparse representation based face recognition. In: Proceedings of IEEE International Conference on Image Processing. New York: IEEE, 2010. 1601--1604. Google Scholar
[17] Zhang Q, Li B. Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of Computer Vision and Pattern Recognition. New York: IEEE, 2010. 2691--2698. Google Scholar
[18] Ramirez I, Sprechmann P, Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features. In: Proceedings of Computer Vision and Pattern Recognition. New York: IEEE, 2010. 3501--3508. Google Scholar
[19] Mairal J, Bach F, Ponce J, et al. Discriminative learned dictionaries for local image analysis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2008. 1--8. Google Scholar
[20] Peng J. Learning inter-related visual dictionary for object recognition. In: Proceedings of Computer Vision and Pattern Recognition. New York: IEEE, 2012. 3490--3497. Google Scholar
[21] Kong S, Wang D. A dictionary learning approach for classification: separating the particularity and the commonality. In: Proceedings of European Conference on Computer Vision. Berlin: Springer-Verlag, 2012. 186--199. Google Scholar
[22] Gao S H, Tsang I W H, Ma Y. Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization. IEEE Trans Image Process, 2014, 23: 623-634 CrossRef PubMed ADS Google Scholar
[23] Gu S, Zhang L, Zuo W, et al. Projective dictionary pair learning for pattern classification. In: Proceedings of Advances in Neural Information Processing Systems. 2014. 793--801. Google Scholar
[24] Yang M, Zhang L, Feng X. Sparse Representation Based Fisher Discrimination Dictionary Learning for Image Classification. Int J Comput Vis, 2014, 109: 209-232 CrossRef Google Scholar
[25] Lu J, Wang G, Zhou J. Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition. IEEE Trans Image Process, 2017, 26: 4042-4054 CrossRef PubMed ADS Google Scholar
[26] Pham D S, Venkatesh S. Joint learning and dictionary construction for pattern recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2008. 1--8. Google Scholar
[27] Mairal J, Ponce J, Sapiro G, et al. Supervised dictionary learning. In: Proceedings of Advances in neural information processing systems, 2009. 1033--1040. Google Scholar
[28] Zhuolin Jiang , Zhe Lin , Davis L S. Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 2651-2664 CrossRef Google Scholar
[29] Cao X C, Zhang H, Guo X J. SLED: Semantic Label Embedding Dictionary Representation for Multilabel Image Annotation. IEEE Trans Image Process, 2015, 24: 2746-2759 CrossRef PubMed ADS Google Scholar
[30] Jing X Y, Wu F, Li Z. Multi-Label Dictionary Learning for Image Annotation. IEEE Trans Image Process, 2016, 25: 2712-2725 CrossRef PubMed ADS Google Scholar
[31] Zhao Q, Li Q M. Extraction and application of Yi nationality's decorative patterns in the tourist souvenirs. Packag Eng, 2017, 38: 240--244. Google Scholar
[32] Wang Y. The digital applications of folk art elements. Taiyuan: Taiyuan University of Technology, 2014. Google Scholar
[33] He N, Lu K. An Image Segmentation Method for Chinese Paintings by Combining Deformable Models with Graph Cuts. In: Proceedings of the 14th International Conference on Human-Computer Interaction: Design and Development Approaches. Berlin: Springer, 2011. 571--579. Google Scholar
[34] Xiang J, Zhang J, Pan R R, et al. Graphic contour extraction for printed fabric based on texture smoothing. J Textile Res, 2017, 38: 162--167. Google Scholar
[35] Yang B W, Lu X Q, Chen C. Multiscale color segmentation algorithm for textile images. J Zhejiang Univ (Eng Sci), 2005, 39: 530--533+546. Google Scholar
[36] Yue J F. On the subject classification and cultural connotation of paper-cut in Bozhou. Home Darma, 2017, 10: 255--256. Google Scholar
[37] Yang J L. A study on classification of traditional tibetan clothing patterns. Big Stage, 2015, 325: 230--231. Google Scholar
[38] Liu C H. Classification and artistic characteristics of mongolian traditional patterns. Big Stage, 2015, 3: 81--82. Google Scholar
[39] Zhang H. Research and application of image classification of stylized fabrics. Dissertation for Master Degree. Zhejiang: Zhejiang University, 2012. Google Scholar
[40] Qian J Q. A study on semantic-based thangka image annotation and retrieval. Lanzhou: Northwest Minzu University, 2010. Google Scholar
[41] Zhang D Q, Pham B, Li Y F. Modelling traditional Chinese paintings for content-based image classification and retrieval. In: Proceedings of the 10th International Multimedia Modelling Conference. Washington: IEEE Computer Society, 2004. 258. Google Scholar
[42] Pawening R E, Dijaya R, Brian T, et al. Classification of textile image using support vector machine with textural feature. In: Proceedings of International Conference on Information & Communication Technology and Systems. New York: IEEE, 2016. 119--122. Google Scholar
[43] An X L, Wei K Y. The discuss of the application of Jingpo ethnic traditional national pattern in landscape architecture. South China Agr (Garden Flower Edition) 2011, 5: 1--6. Google Scholar
[44] Wang Y. A study on application of Uygur national patterns in food packaging design. Dissertation for Master Degree. Xi'an: Northwest University, 2015. Google Scholar
[45] Zhao H Y, Peng H, Zhang X L. A generation method of carpet pattern based on evolutionary computation. J Graph, 2015, 36: 41--46. Google Scholar
[46] Zhao H Y, Pan Z G, Xu Z G. Automatic generation of Xinjiang ethnic fabric patterns based on configuration style. J Graph, 2013, 34: 17--21. Google Scholar
[47] Zhao H Y, Yang Y F, Xu G M. Design method for xinjiang folk art pattern. Comput Syst Appl, 2011, 20: 94--99. Google Scholar
[48] Zhao H Y, Peng H, Yang Y F, et al. A generation method of carpet pattern based on topology configuration. J Comput-Aided Design Comput Graph, 2013, 25: 502--509. Google Scholar
[49] Zhang M L, Wu L. Lift: multi-label learning with label-specific features. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37:107-120 DOI: 10.5591/978-1-57735-516-8/IJCAI11-270. Google Scholar
[50] Wang J J, Yang J C, Yu K, et al. Locality-constrained linear coding for image classification. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 3360--3367. Google Scholar
[51] Zhang M L, Pe?a J M, Robles V. Feature selection for multi-label naive Bayes classification. Inf Sci, 2009, 179: 3218-3229 CrossRef Google Scholar
[52] Huang J, Li G R, Huang Q M, et al. Learning label specific features for multi-label classification. In: Proceedings of IEEE International Conference on Data Mining, Atlantic City, 2015. 181--190. Google Scholar
Figure 1
(Color online) Roc pattern in miao nationality. (a) Body of the fish; (b) wings of the bird; (c) body of the bird
Figure 2
Framework of national cultural pattern digitalization
Figure 3
(Color online) Research examples of national cultural pattern digitalization
Figure 4
(Color online) Framework of multi-label image annotation. (a) Represents image feature extraction; (b) constructs the dictionary; (c) and (d) are the test stages
Figure 5
(Color online) Examples of image annotation. (a) Traditional carpet pattern; (b) traditional national dress pattern; (c) Ming and Qing court dress pattern
Figure 6
Convergence of the objective function
Figure 7
(Color online) Hyper-parameters: (a) $\lambda_1$; (b) $\lambda_2$; (c) $\lambda_3$; (d) $\gamma$
Data set | Number of | Number of | LCard | LDen | DL | PDL | Number of trianing |
images | labels | samples | |||||
Ming and Qing court dress pattern | 899 | 5 | 1.3582 | 0.2716 | 12 | 0.0133 | 600 |
Traditional national dress pattern | 782 | 6 | 2.7724 | 0.4621 | 18 | 0.0230 | 400 |
Traditional carpet pattern | 536 | 3 | 1.5690 | 0.5230 | 7 | 0.0131 | 200 |
One-error | Coverage | Ranking-loss | Average-precision | |
ML-KNN | 0.3946 | 1.1873 | 0.2152 | 0.7419 |
Rank-SVM | 0.3679 | 1.1037 | 0.1909 | 0.7653 |
MLNB | 0.5552 | 1.5418 | 0.3088 | 0.6533 |
LLSF-BR | 0.4013 | 1.2642 | 0.2305 | 0.7340 |
LLSF-CC | 0.7458 | 1.8428 | 0.3946 | 0.5427 |
LLSF | 0.5686 | 1.6923 | 0.3464 | 0.6243 |
SCMIDL | 0.3478 | 0.9565 | 0.1577 | 0.7911 |
One-error | Coverage | Ranking-loss | Average-precision | |
ML-KNN | 0.0700 | 1.7853 | 0.0586 | 0.9313 |
Rank-SVM | 0.0497 | 1.7382 | 0.0550 | 0.9431 |
MLNB | 0.0497 | 1.8508 | 0.0699 | 0.9321 |
LLSF-BR | 0.0445 | 1.7304 | 0.0528 | 0.9459 |
LLSF-CC | 0.0602 | 1.7592 | 0.0620 | 0.9385 |
LLSF | 0.0524 | 1.8455 | 0.0667 | 0.9357 |
SCMIDL | 0.0445 | 1.6780 | 0.0450 | 0.9524 |
One-error | Coverage | Ranking-loss | Average-precision | |
ML-KNN | 0.1380 | 0.8661 | 0.1887 | 0.9049 |
Rank-SVM | 0.0675 | 0.7589 | 0.1196 | 0.9445 |
MLNB | 0.2791 | 1.0327 | 0.3037 | 0.8341 |
LLSF-BR | 0.0859 | 0.7827 | 0.1365 | 0.9351 |
LLSF-CC | 0.0951 | 0.8393 | 0.1672 | 0.9225 |
LLSF | 0.0767 | 0.7173 | 0.1043 | 0.9496 |
SCMIDL | 0.0670 | 0.7366 | 0.0950 | 0.9530 |
Data set | Original objective function | $\rm~\lambda_{2}=0$, $\rm~\lambda_{3}=0$, $\rm~\gamma=0$ | $\rm~\lambda_{2}=0$ | $\rm~\lambda_{3}=0$, $\rm~\gamma=0$ | |
3*Average-precision | 1 | 0.7865 | 0.7829 | 0.7862 | 0.7809 |
2 | 0.9459 | 0.9411 | 0.9467 | 0.9424 | |
3 | 0.9305 | 0.9277 | 0.9290 | 0.9277 | |
3*Coverage | 1 | 1.0736 | 1.0803 | 1.0702 | 1.0870 |
2 | 1.6571 | 1.6518 | 1.6492 | 1.6466 | |
3 | 0.8184 | 0.8244 | 0.8214 | 0.8244 | |
3*One-error | 1 | 0.3378 | 0.3445 | 0.3411 | 0.3478 |
2 | 0.0340 | 0.0628 | 0.0340 | 0.0602 | |
3 | 0.1018 | 0.1080 | 0.1049 | 0.1080 | |
3*Ranking-loss | 1 | 0.1826 | 0.1856 | 0.1826 | 0.1873 |
2 | 0.0509 | 0.0525 | 0.0499 | 0.0516 | |
3 | 0.1388 | 0.1435 | 0.1404 | 0.1435 |